Метод сопряженных направлений

Сплайн-интерполяция таблично заданной функции

1. На отрезке [a, b] задать одномерную сетку

 

hx = {xi / xi = xi –1 + hi, hi > 0, i = 1, 2, 3, …, n; x0 = a, xn = b}

 

и значения yi = f(xi) в узлах сетки xi, i = 0, 1, 2, …, n.

Задать x* Î (a, b).

2. Положить ai = yj, i = 0, 1, 2, …, n.

3. Составить и решить трех диагональную систему методом прогонки:

 


 

Определить значения коэффициентов ci, i = 0, 1, 2, …, n.

4. Определить значения коэффициентов di и bi, i = 1, 2, 3, …, n, воспользовавшись формулами:

 

di = (ci – ci 1) / hi, i = 1, 2, …

 

5. Определить значение индекса 0 < k £ n из условия x* Î [xk – 1, xk].

6. Вычислить по формуле

 

S(x*) = Sk(x*) = ak + bk(x* – xk) + (ck / 2)(x* – xk)2 + (dk / 6)(x* – xk)3.

 

7. Процесс завершен: S(x*) – результат интерполяции табличных данных в точку x* Î (a, b).

Результаты вычислений удобнее представлять в виде таблицы:

 

ai

bi

ci

di

0,03922

0,96467

-1,188280

-29,70700

0,07696

0,92494

-0,798322

9,74897

0,11333

0,89366

-0,765997

0,80813

0,14842

0,85986

-0,92391

-3,94780

0,18232

0,84138

0,00000

23,09770

 

Значение функции в точке находится по формуле:

 

S(x*) = Sk(x*) = ak + bk(x* – xk) + (ck / 2)(x* – xk)2 + (dk / 6)(x* – xk)3


 

2. Найти решение задачи Коши для дифференциального уравнения на равномерной сетке [a, b] с шагом 0,2 методом Эйлера и классическим методом Рунге-Кутта

 

, , 0 £ х £ 1

 

Решение. Метод Эйлера

 

 

- разностная аппроксимация Эйлера. Точность метода . Метод Рунге-Кутта

дифференциальный интерполирующий уравнение сплайн


Результаты вычислений удобнее представлять в виде таблиц:

Метод Эйлера

 

x y
0 0 1
0,2 0,2 1
0,4 0,416 1.04
0,6 0,67392 1.1232
0,8 1,00639 1.25798
1 1,45926 1.45926

 

Метод Рунге-Кутта

i =
0 0 1 0 0,02 0,0202 0,040808 1,0202
1 0,2 1,0202 0,0408081 0,0624363 0,0630852 0,0866629 1,08329
2 0,4 1,08329 0,086663 0,112662 0,113962 0,14367 1,19722
3 0,6 1,19722 0,143666 0,177667 0,180047 0,220362 1,37713
4 0,8 1,37713 0,22034 0,267713 0,271977 0,329821 1,64872
5 1 1,64872 0,329743 0,398989 0,406607 0,493278 2,05442

 

3. Найти решение задачи безусловной минимизации ¦(х) ® min, х Î R2. Установить множество глобального решения

 

¦(х) =

 

Решение

Данная задача решается методом сопряженных направлений (градиентов). Алгоритм данного метода представлен далее.




Метод сопряженных направлений

1 Начать с точки x(0) = (x1(0), x2(0), …, xn(0))т и n-линейно независимых направлений s(i),

i = 1, 2, …, n, которые могут быть выбраны, например, совпадающими с координатными направлениями e(i), i = 1, 2, …, n. Положить k = 1.

2 Начиная с точки x(0) осуществить одномерный поиск для функции f(x) в направлении s(n) и определить точку z(1).

3 Начиная с точки z(1) осуществить последовательно n – 1 одномерный поиск для f(x) сначала в направлении s(1), а затем из полученной точки в направлении s(2) и т. д. до одномерного поиска в направлении s(n – 1) включительно. В результате этих действий будет определена точка x(2).

4 Начиная с точки x(2) осуществить одномерный поиск для f(x) в направлении s(n) и определить точку z(2).

Согласно обобщенному свойству "параллельного подпространства" направление

 

s(n + 1) = z(2) – z(1)

 

будет сопряженным по отношению к направлениям s(n), s(n – 1), …, s(nk + 1) (для k = 1 – только к направлению s(n)).

5 Начиная с точки z(2) осуществить поиск в направлении s(n + 1) и определить x*.

6 Положить k: = k + 1. Если k = n, перейти к выполнению п. 8.

7 Положить z(1): = x* и s(i): = s(i + 1), i = 1, 2, …, n.и перейти к выполнению п. 2.

8 Процесс вычислений завершен: x* – точка минимума функции f(x).

Результаты вычислений удобнее представлять в виде таблицы:

 

Таблица результатов

k

0 0 0 1 1       0
1 0 0 1 0 2 2 0 -4
2 2 0 0 1 -2 2 -2 -8

Точка (2,-2) – точка минимума функции. В этой точке функция принимает значение .

 



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: