Экзаменационный билет № 13

1. Составьте алгоритм по охране окружающей среды от выбросов окиси углерода и фторидов в черной металлургии

 

Дымовые газы доменных печей, конвертеров, электросталеплавильных, ферросплавных печей и других агрегатов черной металлургии содержат окись углерода, которая, помимо токсичности, легко взрывается в присутствии кислорода. Если газы, содержащие СО, не используют в качестве топлива или активных восстановителей, их в основном дожигают:

2СО + О2=2СО2

В случае небольшой концентрации СО в газе его очищают при температуре около 5000С с конверсией в присутствии катализатора (смеси окислов железа и хрома):

СО+Н2О D СО2 + Н2О.

Применяют также очистку газа от СО промывкой медно-аммиачным раствором.

Очистка газов от фторидов.

Для изготовления эмалированной посуды требуется фритта, в процессе приготовления которой выделяется фтористый водород. Для осуществления процессов электросварки труб применяют флюсы. Флюсоплавильные печи выделяют фтористый кремний. Очистку газов от фторидов осуществляют мокрым способом. На многих металлургических заводах для очистки газов от фтористого водорода применяют их обработку раствором известкового молока:

2НF + Са(ОН)2→СаF2 + 2Н2О.

Для этой же цели используют и раствор соды:

2НF + Nа2СО3= 2NаF + Н2СО3.

Образующийся NаF идет обычно на получение криолита (Nа3АlF6). Для очистки газов при большой концентрации хлористого или фтористого водорода их промывают водой с получением соответственно соляной и плавиковой кислот.

Абсорберы и жидкостные коммуникации, используемые при очистке газов от фторидов при высокой температуре, изготовляют из свинца; при низкой температуре стальные поверхности покрывают кислотостойкими пластмассовыми составами.

Рациональным при очистке газов от цианидов, органических примесей, фенолов и окиси углерода является каталитическое или термокаталитическое их дожигание. Этот процесс осуществляется в топках котлов в атмосфере кислорода, достаточной для процесса горения. В этом случае отпадает необходимость в строительстве дорогостоящих очистных установок.

2. Проанализируйте новые направления в развитии способов защиты воздушного бассейна металлургических предприятий

 

Принципиально новым направлением в металлургии являются разработка и внедрение методов геотехнологии. Эти методы основаны на физико-химических процессах, которые можно в определенном порядке вести в недрах земли с целью добычи полезных ископаемых, Прямо на месте залегания, т.е. в недрах, их переводят в подвижное состояние: раствор, расплав, пар, газ, гидросмесь. В таком виде они пригодны для транспортировки через скважины на поверхность. Новая технология обеспечивает не только более полную и комплексную переработку сырья, но и уменьшает вредное влияние отходов добычи и переработки на окружающую среду.

Своеобразной разновидностью геотехнологии является микробиологический метод добычи полезных ископаемых, основанный на использовании способности некоторых микроорганизмов извлекать из окружающей среды и накапливать в себе определенные химические элементы.

Биометаллургии принадлежит будущее, с ее помощью человечество получит неограниченные возможности без ущерба для себя и окружающей среды (природы) производить железо, металлы, различные стали и сплавы высоких чистоты и качества.

Биометаллургия не потребует огнеупорных материалов, флюсов, топлива, полностью исчезнет вероятность загрязнения металлов.

Также японцы доказали, что биометаллургия не такая уж фантастика. Они уже выплавили сталь с ванадием, извлеченным из морских животных асцидий.

Развивается космическая металлургия. Эксперименты показали, что в состоянии невесомости возникают невиданные на Земле возможности для выращивания уникальных монокристаллов и кристаллических систем. Не исключено, что в недалеком будущем многие редкие металлы и сплавы, а также полупроводниковые материалы с экологической и экономической точки зрения будет более выгодно выплавлять в условиях космоса, на орбитальных станциях.

Но «космические технологии» — это и элитное производство, основанное на многолетнем производстве ракетной техники, «космических» требованиях к выпускаемой продукции, сложность и многогранность используемого оборудования, высококвалифицированный персонал. Ранее ориентированные на «оборонку» предприятия ищут и находят применение своим уникальным технологиям.

Наряду с традиционными технологическими процессами осваиваются новые уникальные технологии, которые успешно внедряются в производство гражданской продукции.

Созданы новые высокопрочные материалы, используя метод вакуумного литья на основе нержавеющих особо прочных сталей, которые могут работать в сероводородной среде в интервале температур от - 253 °C. до + 800 °C.

Литье в оболочковые керамические формы позволяет получить высокоточные литые детали сложного профиля, практически исключающие необходимость дополнительной обработки (чистота поверхности 20-40 мкм), сократить металлоемкость изделий, не снижая при этом показатель надежности.

Сварка в вакууме крупногабаритных деталей из разных металлов (медь со сталью, нержавеющие стали с другими сплавами) является наиболее оригинальной технологией. Объем рабочей камеры установки 114 м3, что позволяет сваривать детали до 5 м длиной.

 

3. Охарактеризуйте аппаратуру для отбора проб воздуха. Технические и технологические проблемы экологического мониторинга.

 

Для удобства отбора проб в производственных условиях широко применяют аспирационные устройства, включающие побудитель расхода, расходомерное устройство, позволяющие отбирать вещества в различном агрегатном состоянии. Аспирационные устройства подразделяют в зависимости от следующих факторов:

1) расхода воздуха – на малорасходные и высокорасходные;

2) источника энергии – на сетевые, аккумуляторные, универсальные и ручные;

3) объекта отбора проб – на устройства для газовых и аэродисперсных примесей;

4) степени автоматизации программы работ – на аспираторы ручного управления, при использовании которых начало и режим отбора пробы фиксируются оператором; полуавтоматические, работа которых прекращается по достижении заданного времени или объёма пропущенного воздуха; автоматические, работающие без вмешательства оператора;

5) количества одновременно отбираемых проб – на одноканальные и многоканальные;

6) условий эксплуатации – на стационарные, переносные, а также индивидуальные пробоотборники.

Для создания потока воздуха через пробоотборные устройства используются ручные и водяные аспираторы, а также различные типы электромеханических аспираторов. Среди ручных аспираторов весьма распространены пружинные мхи с известным объёмом, резиновые груши, ручные насосы (поршневые и беспоршневые), откалиброванные шприцы различной вместимостью, газовые пипетки. В качестве водяных аспираторов обычно используют специальные соизмеренные стеклянные ёмкости, заполненные водой, выполняющие роль рабочего тела.

В электромеханических аспирационных устройствах для отбора проб воздуха рабочей зоны используют ротационные воздуходувки и диафрагменные насосы. Ротационные воздуходувки отличаются малыми габаритами и массой, которые меньше, чем у аналогичных поршневых насосов. В корпусе воздуходувки вращается ротор со вставленными в пазы лопастями, которые при вращении ротора прижимаются к внутренним стенкам корпуса и обеспечивают всасывание воздуха. Применение ротационных воздуходувок весьма ограничено в связи со сложностью регулирования производительности в широких пределах, кроме того, они создают сильный шум при работе.

Простыми и экономичными побудителями расхода воздуха являются диафрагменные насосы. В простейшем виде такой насос подобен поршневому насосу, в котором поршень заменён пульсирующей диафрагмой. Единственными движущимися деталями, находящимися в соприкосновении с перекачиваемой средой, являются диафрагма и клапаны. В связи с простой конструкцией и отсутствием быстроизнашивающихся деталей диафрагменные насосы наиболее надёжны в эксплуатации. По основным технико-экономическим показателям (масса, рабочее давление, производительность) диафрагменные насосы превосходят широко распространённые плунжерные и поршневые насосы или равноценные. Кроме того они дешевле.

Диафрагменные насосы более долговечны в эксплуатации, так как срок службы диафрагм намного превышает эксплуатационные данные уплотняющих элементов поршневых насосов. Расходом вещества обычно называют массу или объём вещества, проходящие через определённое сечение канала в единицу времени. Приборы или комплекты приборов, определяющие расход вещества в единицу времени, называют расходомерами. Расходомер может быть снабжен счётчиком, показывающим массу или объём вещества, прошедшего через прибор за какой-либо промежуток времени. В зависимости от принципа действия расходомеры бывают переменного перепада давления и постоянного перепада давления. В основу принципа действия расходомеров переменного перепада давления положено измерение перепада давления на местном сужении (сопротивлении), введённом в поток. При протекании вещества через сужение средняя скорость потока увеличивается, и часть потенциальной энергии давления переходит в кинетическую энергию. В результате статическое давление потока после сужения уменьшается, т.е. возникает перепад давления. Если измерить давление до сужения и непосредственно за ним, то разность давлений будет зависеть от скорости потока, а следовательно, и от расхода.

В комплект расходомера переменного перепада давления входят сужающее устройство, дифференциальный манометр (дифманометр) и вторичный прибор для передачи результатов на расстояние. В качестве сужающих устройств применяют нормальные диафрагмы, сопла и трубы Вентури, сегментные диафрагмы и др. Дифманометры, предназначенные для измерения расхода, делятся по принципу действия на поплавковые, колокольные, мембранные, сильфонные, кольцевые и др. Принцип действия расходомеров постоянного перепада давления основан на зависимости от расхода вещества вертикального перемещения тела (поплавка), изменяющего при этом площадь проходного отверстия прибора так, что перепад давления по обе стороны поплавка остаётся постоянным. Из этого типа расходомеров наибольшее распространение получили ротаметры и поплавковые расходомеры. Ротаметры – расходомеры с поплавком, перемещающимся вдоль длинной конической трубы. При изменении положения поплавка проходное сечение между ним и внутренней стенкой конической трубки изменяется, что ведёт к изменению скорости потока в проходном сечении, а следовательно, к изменению перепада давления на поплавок. Перемещение поплавка продолжается до тех пор, пока перепад давлений не станет равным массе поплавка. Каждому значению расхода среды, проходящему через ротаметр при определённой плотности и кинематической вязкости, соответствует вполне определённое положение поплавка. Для поплавковых расходомеров характерен поплавок обычной конической формы, перемещающийся внутри отверстия. Их характерными особенностями являются дистанционная (электрическая или пневматическая) передача положения поплавка, незначительный ход поплавка, обычно не превосходящий его диаметр. Кроме того, к наиболее распространённым расходомерам относятся газовые счётчики («газовые часы»), обеспечивающие наибольшую точность измерения. Погрешность измерения объёма пропущенного воздуха для газового барабанного счетчика ГСБ-4 не превышает 1 %. Фиксация анализируемых ингредиентов пробы внутри пробоотборного устройства производится чаще всего с использованием методов обогащения (концентрирования) определяемых веществ, которые различаются при анализе аэрозолей и при анализе газо- и парообразных примесей.

Основным методом концентрирования проб при анализе аэрозолей являются механическая фильтрация воздушного потока через инерционные преграды (аэрозольные фильтры типа АФА, фильтры из ткани Петрянова, пористые фильтры Шотта и др.).

Для гравиметрического определения концентрации аэрозолей и твёрдых частиц применяют фильтры АФА-ВП, изготовленные из тонковолокнистого перхлорвинилового волокна. Фильтры имеют небольшую массу и гидрофобны. Для химического (реагентного) анализа аэрозолей предназначены фильтры ЛФА-ХП, изготовленные из трёх видов ультратонких волокон;

Для отбора химических веществ из воздуха используют различные типы сорбционных устройств (коллекторы). Они различаются материалом, из которого изготовлены, формой и размером. Для изготовления коллекторов следует использовать материалы, которые не сорбируют химические вещества.

Для отбора паров веществ различной химической природы наибольшее распространение получили прямые сорбционные трубки различных размеров, изготовленные из стекла. Наибольшее распространение получили абсорберы со стеклянными пористыми пластинками, поглотительные сосуды Рихтера, Зайцева.

Отбор проб из воздуха в охлаждаемые ловушки рекомендуется при отборе нестабильных и реакционно-способных соединений (например бенз(а)пирен из выхлопных газов). Отбор проб сводится к пропусканию исследуемого воздуха со скоростью не более 1 дм3/мин через охлаждаемую ловушку с большей поверхностью, например через стальные или стеклянные трубки, заполненные инертным материалом, которые служат для увеличения охлаждающей поверхности.

Поскольку при вымораживании примесей из больших объёмов воздуха в ловушке одновременно конденсируются и пары воды, перед ловушкой необходимо помещать осушитель (карбонат калия, фосфорный ангидрид, цеолиты). Осушитель подбирают таким образом, чтобы он задерживал влагу из воздуха и не задерживал исследуемое вещество.

Задача технико-технологического обеспечения экологического мониторинга сводится к выбору оптимального комплекта технических средств наблюдения и контроля из числа серийно выпускаемых различными предприятиями и ведомствами на основе нормативной базы экологического мониторинга.

Информативность мониторинга во многом зависит от уровня технических средств (оснащенности службы), поэтому при комплектовании парка приборов необходимо руководствоваться всем комплексом нормативов контроля, регламентирующим объемы, периодичность, требуемую точность и достоверность, а также полноту наблюдений. Обязательное условие обеспечения требуемой информативности - использование ЭВМ и средств мониторинга на их основе.

Ведомственная служба экологического мониторинга должна иметь полный комплект необходимых технических средств для контроля всех основных параметров загрязнений окружающей среды. Обычно состав загрязнителей воздуха, воды, почв достаточно точно прогнозируется (оксиды азота, углеводороды и др.) и поэтому задача экологического контроля сводится к количественному определению концентраций известных загрязнений. Для этого ведомственные службы экологического контроля достаточно оснастить комплексными передвижными лабораториями анализа качества воздуха, воды, почв.

Организации экологической службы, ее техническому оснащению для контроля какой-либо определенной территории с находящимися на ней источниками техногенеза должны предшествовать научно-исследовательские работы, необходимые для исследования и прогнозирования возможных загрязнений (по составу и объемным концентрациям). Результаты исследований служат основанием для комплектования контрольных служб техническими средствами измерений и анализа состава и концентраций загрязнителей.

Инспекционные службы применяют разные методы и средства экологического контроля. Все они равноправны по критериям информативности, точности и достоверности.

Вычислительные средства обработки информации используются практически на всех уровнях сети. В стационарных и передвижных постах загрузчик данных не только управляет работой анализаторов, но и производит их первичную обработку. В локальных и центральном вычислительных центрах определяются по моделям уровни загрязнения среды по основным и дополнительным ингредиентам, строятся карты изолиний, рассчитываются прогнозы, вычисляются вероятные источники загрязнений и т.п.

Вычислительный центр сети мониторинга загрязнений выполняет следующие функции:

• управление работой сети наземных измерений в оперативном, штормовом режимах и режиме проверки работоспособности;

• сбор информации от стационарных постов и передвижных лабораторий контроля загрязнений;

• ведение банков данных оперативного и долговременного хранения информации с обеспечением надежности хранения информации и защиты от несанкционированного доступа;

• обработка информации для получения общей картины загрязнений для вычисления прогнозов, интегральных оценок экологического состояния среды и др.;

• подготовка и выдача информации о загрязнениях в плановом порядке в виде сводных таблиц, картографического материала и т.п.;

• передача информации в автоматическом режиме в главный вычислительный центр.

Сеть передачи данных наземных измерений со станций экологического мониторинга обеспечивает регулярную (один раз в 10мин, 30мин, 1ч и т.п.) передачу данных измерений от стационарных постов и передвижных лабораторий, передачу данных, поступающих от населения о тревожных и аварийных ситуациях и от вычислительного центра пользователям информации (исполнительной власти, населению и т.п.) по каналам связи.

Информация, передаваемая от стационарных постов и передвижных лабораторий, невелика по объему (сотни байт), но передается достаточно часто. Скорость передачи данных невелика - сотни бит в секунду. Требования к надежности передаваемых данных не предельно жесткие, так как протекающие в атмосфере и воде процессы имеют высокую скорость распространения.

Данные от вычислительного центра пользователям должны передаваться 1-2раза в сутки, объем их достаточно велик (до нескольких десятков килобайт). Поэтому скорость передачи и требования к надежности передачи данных должны быть достаточно высоки.

Информационное обеспечение системы комплексного экологического мониторинга должно содержать следующие элементы:

• упорядоченную структуру информационных потоков (входных, внутренних, выходных);

• инфраструктуру собственно информационной базы данных;

• методики сбора данных от стационарных и передвижных постов;

• методики передачи данных, полученных от постов различного уровня, включая лидары;

• методики обработки данных и расчета интегральных показателей состояния окружающей среды;

• методики определения источников выбросов;

• структуру пользовательских организаций сети и эксплуатационных служб.

• Состав программного обеспечения сети комплексного экологического мониторинга следующий:

• развитые операционные системы;

• стандартные базы данных;

•картографическое и графопостроительное обеспечение;

•мониторы для управления сбором данных.

 

4. Составьте алгоритм отбора проб в жидкие среды.

 

Отбор парогазовых веществ в жидкие поглотительные среды – наиболее распространенный способ. Анализируемые вещества растворяются или вступают в химическое взаимодействие с поглотительной средой (хемосорбция), которая обеспечивает полноту поглощения за счет образования нелетучих соединений. При этом упрощается подготовка пробы к анализу, который обычно проводят в жидкой фазе.

Отбор проб в растворы осуществляют аспирацией исследуемого воздуха через поглотительный сосуд с каким-либо растворителем (органические растворители, кислоты, спирты, вода, смешанные растворы). Скорость пропускания воздуха может меняться в широких пределах – от 0,1 до 100 л/мин.

Полнота поглощения зависит от многих факторов, в том числе от конструкции поглотительных сосудов. Наибольшее распространение получили абсорберы со стеклянными пористыми пластинками, поглотительные сосуды Рыхтера, Зайцева.

Для физической адсорбции важно, чтобы поверхность соприкосновения фаз была наибольшей. В поглотителях с пористой пластинкой этот эффект достигается за счет уменьшения пузырьков воздуха при прохождении его через пористый фильтр, вследствие чего увеличивается контакт воздуха с раствором, а скорость аспирации может быть повышена до 3 л/мин.

Увеличение поверхности контакта может быть достигнуто также в результате увеличения длины пути прохождения пузырьков воздуха через раствор. Так, в поглотительных сосудах Зайцева высота столба растворителя составляет около 10 см. Однако предельная скорость аспирации не превышает 0,5-0,6 л/мин.

При отборе проб в поглотительные сосуды Рыхтера, в которых используют эффект эжекции, скорость аспирации воздуха может достигать 100 л/мин.

Более эффективным является поглощение, основанное на химических реакциях исследуемых веществ с поглотительной жидкостью. Например, для поглощения аммиака и аминов применяют разбавленную серную кислоту, для поглощения фенола – раствор щелочи.

Для проверки эффективности работы поглотительного сосуда к нему присоединяют последовательно еще один или два поглотителя. Пробу воздуха с известным содержанием вредного вещества пропускают через все абсорберы и затем поглотительные растворы из каждого сосуда анализируют.

“Проскок” К (в %) вычисляют по формуле:

К = А2 /(А1 + А2) × 100,

где А2 – масса вещества во втором абсорбере, мкг; А1 – масса вещества в первом абсорбере, мкг.

Степень поглощения Э (в %) вычисляют по формуле:

Э = 100 – К.

Эффективность поглощения считают достаточной, если в первом сосуде абсорбировалось около 95 % исследуемого вещества.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: