Характеристика основных информационных технологий

План

Лекция №1 Принципы устройства вентиляции в зданиях промышленного назначения

1.1. Системы вентиляции промышленного здания

1.2. Схемы организации воздухообмена в помещениях промышленных зданий

1.3. Расчет воздухообмена промышленного здания

1.4. Вентиляция горячих цехов

1.5. Аварийная вентиляция

1.6. Требования к вентиляции категорийных помещений

1.1. Системы вентиляции промышленного здания

Промышленные здания имеют системы вентиляции со своими специфическими особенностями устройства и размещения. Способы вентиляции и число вентиляционных установок на предприятиях зависят от характера технологического процесса, мощности предприятия, а также от его экономической значимости. В промышленных зданиях возможно размещение вентиляционного оборудования в производственных помещениях или снаружи здания - на стенах (на кронштейнах) или кровле, но в любом случае должны быть обеспечены удобное обслуживание вентиляционного оборудования и защита его от возможной конденсации влаги. Внутри здания вентиляционное оборудование устанавливают в вентиляционных камерах, иногда допускается установка его непосредственно в обслуживаемом помещении. При проектировании систем вентиляции следует стремиться к наименьшей длине воздуховодов, определяемой их радиусом действия. Экономические расчеты показывают, что радиус действия приточных установок зависит от скорости движения воздуха в воздуховодах. Так, при скорости 6-10 м/с рекомендуемый радиус действия установки 30- 40 м, при скорости менее 6м/с - 60-70 м. Радиус действия вытяжных установок 30-40 м, а в очень крупных цехах он может достигать 100-120м. При проектировании местной вентиляции следует к одной вытяжной системе присоединять не более 10-12 отсосов. При удалении местными вытяжными установками влажного воздуха или воздуха, со­держащего вредные газы, радиус действия принимается, равным 25-30 м. Радиус действия установок пневматического транспорта может достигать 80-100 м. Эти соображения могут быть положены в основу для выбора числа приточных и вытяжных установок. Вытяжные вентиляционные установки, удаляющие взрыво- и огнеопасные смеси, должны иметь взрывобезопасное исполнение.

Системы приточной вентиляции с искусственным побуждением для производственных помещений, работа в которых производится более 8ч в сутки, как правило, следует совмещать с воздушным отоплением.

Системы приточной вентиляции, совмещенные с воздушным отоплением, следует предусматривать резервным вентилятором или не менее чем с двумя отопительными агрегатами.

Системы общеобменной вентиляции для производственных и адми-нистративно-бытовых помещений (с постоянным пребыванием людей) без естественного проветривания следует предусматривать не менее чем с двумя вытяжными вентиляторами каждая с расходом по 50% требуемого воздухообмена.

Допускается предусматривать одну приточную и одну вытяжную системы с резервными вентиляторами.

Для указанных помещений, соединенных открывающимися проемами со смежными помещениями той же категории взрывопожаробезопасности и с выделением аналогичных вредностей, допускается проектировать приточную систему без резервного вентилятора, а вытяжную – с резервным вентилятором.

Системы местных отсосов следует проектировать так, чтобы концентрация удаляемых горючих газов, паров, аэрозолей и пыли в воздухе не превышала 50% нижнего концентрационного предела распространения пламени при температуре удаляемой смеси.

1.2. Схемы организации воздухообмена в помещениях

промышленных зданий

Распределение приточного воздуха и удаление воздуха из помещений производственных зданий следует предусматривать с учетом режима использования помещений в течении суток или года, а также с учетом переменных поступлений теплоты, влаги и вредных веществ.

При организации воздухообмена в помещениях промышленных зданий возможно применение следующих схем:

а) «снизу - вверх» - при одновременном выделении тепла и пыли; в этом случае воздух подают в рабочую зону помещения, а удаляют из верхней зоны;

б) «сверху - вниз» - при выделении газов, паров летучих жидкостей (спиртов, ацетона, толуола и т. п.) или пыли, а также при одновременном вы-делении пыли и газов; в этих случаях воздух подают рассредоточено в верх-нюю зону, а удаляют местной вытяжной вентиляцией из рабочей зоны поме-щения и системой общеобменной вентиляции из его нижней зоны (возможно частичное проветривание верхней зоны);

в) «сверху - вверх» - в производственных помещениях при одновре-менном выделении тепла, влаги и сварочного аэрозоля, а также во вспомога-тельных производственных зданиях при борьбе с теплоизбытками; обычно в этих случаях воздух подают в верхнюю зону помещения и удаляют из его верхней зоны;

г) «снизу - вверх и вниз» - в производственных помещениях при выделении паров и газов с различными плотностями и недопустимости их скопления в верхней зоне из-за опасности взрыва или отравления людей (малярные цехи, аккумуляторные и т. д.); в этом случае подачу приточного воздуха осуществляют в рабочую зону, а общеобменную вытяжку - из верхней и нижней зон;

д) «сверху и снизу - вверх» - в помещениях с одновременным выделением тепла и влаги или с выделением только влаги при поступлении пара в воздух помещения через неплотности производственной аппаратуры и коммуникаций, с открытых поверхностей жидкостей в ваннах и со смоченных поверхностей пола; в этих случаях воздух подают в две зоны - рабочую и верхнюю, а удаляют из верхней зоны. При этом для предотвращения туманообразования и капели с потолка приточный воздух, подаваемый в верхнюю зону, несколько перегревают по сравнению с воздухом, подаваемым в рабочую зону;

е) «снизу – вниз» применяется при местной вентиляции.

Приточный воздух следует подавать, как правило, непосредственно в помещение с постоянным пребыванием людей. Приточный воздух следует направлять так, чтобы воздух не поступал через зоны с большим загрязнением и не нарушал работы местных отсосов. Приточный воздух следует подавать на постоянные рабочие места, если они находятся у источников вредных выделений, у которых невозможно устройство местных отсосов.

Удаление воздуха из помещений системами вентиляции следует пре-дусматривать из зон, в которых воздух наиболее загрязнен или имеет наиболее высокую температуру или энтальпию. При выделении пылей и аэрозолей удаление воздуха системами общеобменной вентиляции следует предусматривать из нижней зоны.

В производственных помещениях с выделением вредных или горючих газов или паров следует удалять загрязненный воздух из верхней зоны но не менее однократного воздухообмена в 1ч, а в помещениях высотой более 6м – не менее 6м3/ч на 1м2 помещения.

Расход воздуха через местные отсосы, размещенные в пределах рабочей зоны, следует учитывать как удаление воздуха из этой зоны.

1.3. Расчёт воздухообмена промышленного здани я

Расчёт воздухообмена производится для тёплого и холодного периодов года. Расчёту предшествует расчёт теплопоступлений и теплопотерь, расчёт местных отсосов и систем воздушного душирования.

Исходные данные:

– избытки (недостатки) явного тепла в помещении;

– расчётные параметры наружного и внутреннего воздуха;

– суммарная производительность местных отсосов [кг/ч] (без учёта рециркуляционных систем) (Gм.о);

– суммарная производительность воздушных душей [кг/ч] (без учёта рециркуляционных систем) (Gд);

– температура воздуха на выходе из душирующих патрубков (to);

– габаритные размеры цеха;

– минимальный расход воздуха удаляемого из верхней зоны [кг/ч], (Gв.з.min).

Определяют допустимый способ подачи и удаления воздуха из данного цеха в тёплый и холодный периоды по данным СН 118–68 и намечают расчётную схему организации воздухообмена.

1. Воздухообмен для компенсации местных отсосов и вытяжки из верхней зоны (по «местным отсосам»).

Расчёт ведётся для тёплого и холодного периодов года. Составляют уравнение массового баланса

. (1.1)

Принимают Gв.з.min=6 ∙ Fпола ∙ ρв.з. (Fпола- площадь пола, м2; ρв.з -плотность воздуха в верхней зоне, кг/м3), согласно СниП 2.04.05-91* и решают уравнение баланса относительно Gпр.

2. Воздухообмен по ассимиляции теплоизбытков.

Составляют уравнения массового и теплового баланса

(1.2)

Расчёт начинают с тёплого периода. В уравнения балансов подставляют соответствующие значения для тёплого периода: Gд, tо, Gм.о., c, tр.з., tух.

Принимают, что наружный воздух подаётся приточными системами без обработки т.е. tпр= tнА и решают уравнения балансов относительно Gпр и Gв.з.. если полученные значения расходов больше нуля, проверяют условия

. (1.3)

В случае выполнения условия (1.3) расчёт заканчивается и по найден-ным значениям расходов решается прямая задача аэрации (если она допускается) или рассчитываются приточные и вытяжные системы механической общеобменной вентиляции.

Если в результате расчётов по балансовым уравнениям получено отрицательное значение Gв.з. или условие (1.3) не выполняется, то это означает, что количество избыточного воздуха, которое требуется для компенсации вытяжки, превышает количество воздуха необходимое для ассимиляции теплоизбытков, т.е. (tнА ≤ tр.з. ≤ t/р.з.) температура воздуха в рабочей зоне должна быть уточнена при этом, в уравнения баланса подставляются tпр= tнА и Gв.з.= Gв.з.min и определяется Gпр и tр.з, которая учитывается в дальнейших расчётах. По полученным Gпр и Gв.з рассчитывается аэрация или механическая вентиляция.

При использовании механических приточных систем, для снижения расчётного воздухообмена возможна обработка воздуха в оросительной секции. В этом случае, как правило, применяют адиабатическое увлажнение.

В холодный период года задаются Gв.з.= Gв.з.min и определяют из уравне-ний баланса tпр. дальнейшие расчёты зависят от полученной величины tпр.

1. Если tпр < tнБ и в цехе в холодный период допустима аэрация, то принимают tпр= tнБ и решают уравнения баланса относительно Gпр и Gв.з, после чего решается прямая задача аэрации.

2. Если tнБ < tпр ≤ tр.з-10 0С, то в этом случае может применяться комбинированная схема подачи, т.е. часть воздуха должна подаваться механическими системами (Gпрмех), а часть поступает через аэрационные проёмы (Gпраэр). Тогда полученная из уравнений баланса tпр будет средневзвешенной по расходам т.е.

; (1.4)

. (1.5)

В уравнениях (1.4), (1.5) неизвестны tпрмех, Gпрмех, Gпраэр. Для их решения задаются tпрмех = tр.з. - 5÷10 0С, то применяют механическую приточную вентиляцию и рассчитывают системы по полученным Gпр и Gв.з..

3. Если tпр ≥ tр.з. -10 0С,то применяют механическую приточную вентиляцию и рассчитывают системы по полученным Gпр и Gв.з..

Если в помещении по условиям СН 118-68 аэрация не допустима в хо-лодный период, то задаются ∆t = tр.з.- tпр в зависимости от способа подачи воз-духа, находят tпр и решая уравнения баланса, находят Gпр, Gв.з..

1.4. Вентиляция горячих цехов

В цехах (кузнечных, термических и др.) с избытками явной теплоты (порядка 70-100 Вт) целесообразно устраивать приточную механическую вентиляцию в виде воздушного душирования фиксированных рабочих мест (при облучении более 300 Вт/м2); вытяжную установку в виде бортовых отсосов от оборудования — ванн травильных, закалочных и др.

Недостающий же воздухообмен для ассимиляции избыточной явной теплоты осуществляется общеобменной организованной естественной вентиляцией — аэрацией, при которой подача приточного воздуха в теплый период года осуществляется через створки проемов, размещаемых на высоте 0,5—1 м от пола, и в холодный период года через проемы, расположенные на высоте 4—6 м от пола. Естественная вытяжная вентиляция осуществляется из верхней зоны через вытяжные аэрационные фонари, устраиваемые, как правило, незадуваемыми, с ветрозащитными щитами.

Оценку полноты использования приточного воздуха можно производить по коээффициенту эффективности (воздухообмена)

,

где tух, tпр, tр.з - соответственно температура воздуха уходящего, приточного и рабочей зоны.

1.5. Аварийная вентиляция

Системы аварийной вентиляции устраивают в производственных поме-щениях, в которых возможно внезапное поступление в воздух больших коли-честв вредных иди взрывоопасных веществ. Производительность аварийной вентиляции определяется расчетом в технологической части проекта или в соответствии с требованиями ведомственных нормативных документов.

Аварийный воздухообмен обеспечивается совместной работой основной (общеобменной и местной) и аварийной вентиляции. В аварийный режим должен быть обеспечен воздухообмен не менее 8 крат/ч по полному внутреннему объему помещения, а в помещениях категорий А, Б и Е - 8-кратный воздухообмен дополнительно к воздухообмену, создаваемому основной вентиляцией.

Совместными действиями вентиляционных устройств концентрация вредностей, попавших в помещение в кратчайшее время, должна быть умень-шена ниже предельно допустимой концентрации (ПДК).

Расчет аварийной вентиляции состоит в определении величины аварий-ного воздухообмена и времени, за которое концентрация вредного вещества должна быть снижена до ПДК с помощью аварийной вентиляции.

Системы аварийной вентиляции в помещениях с производствами категорий А, Б и Е устраиваются с механическим побуждением. Вентиляторы применяются во взрывобезопасном исполнении. В поме-щениях с производствами категорий В, Г и Д допускается применение аварийной вентиляции с естественным побуждением (с проверкой на теплый режим).

Для перемещения взрывоопасных газов следует предусматривать системы аварийной вентиляции с помощью эжекторов. Если для аварийной вентиляции используется одна основная, производительность которой достаточна для аварийного воздухообмена, то для нее следует применять резервный вентилятор с электродвигателем. Резервные вентиляторы должны включаться автоматически при остановке основных.

Для компенсации воздуха, удаляемого аварийной вытяжной вентиляцией, дополнительных приточных систем вентиляции предусматривать не следует.

Аварийная вентиляция, как правило, устраивается вытяжной. Возмеще-ние воздуха, удаляемого вытяжной аварийной вентиляцией, должно предусматриваться преимущественно за счет поступления наружного воздуха. Выбросные устройства аварийной вентиляции не следует располагать в местах постоянного пребывания людей и размещения воздухозаборных устройств приточной вентиляции. Запуск устройств аварийной вентиляции следует проектировать дистанционным у доступных мест как изнутри, так и снаружи помещений.

Местные отсосы, удаляющие вещества 1-го и 2-го классов опас­ности от технологического оборудования, следует блокировать таким образом, чтобы оно не могло работать при бездействии вытяжной вентиляции.

1.6. Требования к вентиляции категорийных помещений

К вентиляции категорйных помещений предъявляются следующие требования:

1) При устройстве общеобменной механической вентиляции, помещение должно иметь не менее 2-х приточных и 2-х вытяжных систем или должен предусматриваться резервный двигатель, причём производительность каждой системы должен быть не менее 50% потребного количества воздуха.

2) В помещениях категорий А, Б и Е должен быть создан подпор т.е. Gпр=0,95Gвыт .

3) Запрещено располагать вентиляционные камеры в подвальных поме-щениях.

4) Для помещений категорий А, Б и Е должны проектироваться самостоятельные системы вентиляции.

5) Для помещений категорий А, Б и Е не допускается рециркуляция. Вентиляторы должны располагаться вне обслуживаемого помещений и быть во взрывобезопасном исполнении.

6) Для предотвращения распространения взрыва по воздуховодам в них требуется устройство противовзрывных клапанов

7) Концентрация взрывчатых веществ в вытяжных воздуховодах должна быть не более 50% величины нижнего предела взрываемости.

8) системы воздуховодов, обслуживающих взрывоопасные помещения должны прокладываться по кратчайшему пути и выводиться на улицу.

Представляется целесообразным охарактеризовать наиболее важные информационные технологии.

Технологии безбумажного документооборота (офисные технологии). Идея безбумажной информатики не нова. Еще в 60-х-70-х годах стало ясно, что компьютеры способны не только к вычислениям, но и к обработке текстовых данных. Однако этот замысел не нашел должной реализации по следующим причинам. Во-первых, уровень развития технической и программной базы не позволял осуществить полноценное внедрение теоретических наработок. Во-вторых, определенный перекос осуществлялся и в самой постановке вопроса, а именно речь шла о полном отказе от традиционного носителя информации – бумаги. Естественно, что это отпугивало пользователей- непрофессионалов и по сути было нереализуемым. И лишь с появлением персональных компьютеров и развитых программных средств для них рассматриваемая технология нашла реальное воплощение без первоначального перекоса, связанного с самим понятием «безбумажная».

В настоящее время офисные технологии базируются на использовании специальных комплектов программ, подобных Microsoft Office. Такие комплекты включают в себя программы для обработки текстовых документов (текстовые редакторы – Microsoft Word), проведения расчетов (табличные процессоры – Microsoft Excel),управления базами данных (Microsoft Access), планирования работ (Microsoft Project, Microsoft Schedule), комплексирования документов (Microsoft Binder) и другие. С их помощью можно создавать и обрабатывать разнообразные документы, состоящие из текстовой части, сопровождаемых иллюстрациями, графиками, расчетными соотношениями и т.д. В полученных документах без особого труда организуется корректировка, модификация, поиск нужных разделов и другие подобные операции. Универсальные и доступные пользователям-непрофессионалам в области программирования механизмы связывания объектов позволяют комплектовать в единое целое разнородные части (например, текст и графику). Использование принципа «что вижу – то получаю» дает возможность готовить макет документа на экране монитора, и в таком же виде получать на принтере его бумажную копию, что удачно совмещает «безбумажную» подготовку документа с материализацией в традиционном виде.

Хорошо себя зарекомендовал безбумажный документооборот в сдаче всевозможных отчетов в электронном виде, например в налоговую инспекцию, через Интернет. Лет пять назад мне довелось сдавать годовой отчет университета для Министерства сельского хозяйства, подготовленный с помощью продуктов фирмы 1С. Предварительно отчет был подготовлен в соответствующей программе и затем в электронном же виде сдан и проверен в принимающей организации. Тогда мне не было понятно, зачем, чтобы сдать отчет нужно было ехать в Москву.

Кроме офисных пакетов также к этой категории ИТ можно отнести следующее. Дополнительное применение специальных устройств (сканеров) и программ позволяет вводить в память ЭВМ изображения и текст (DesckScan). При необходимости можно организовать распознавание введенного текста с целью его дальнейшей обработки на компьютере (CuneiForm, FineReader). П рограммы - переводчики осуществят перевод документа с одного языка на другой (Stylus, Socrat), а лингвистические программы выполнят орфографический и синтаксический контроль текста (Orfo) разнообразные графические редакторы (Corel, PageMaker) помогут оформить иллюстрационную часть документа, программы- проектировщики (AutoCad) позволят разработать чертеж или электрическую схему, математические программы (MathCad) облегчат проведение сложных расчетов. Программы- архиваторы обеспечат компактное хранение архивных документов на магнитных носителях информации и позволят довольно эффективно извлекать из архивов нужные документы.

Дальнейшее развитие офисная технология получила в издательских системах. Так называются программы, с помощью которых осуществляют компьютерную верстку издания (книги, журналы, газеты) и его последующую выдачу на множительную аппаратуру для массовой печати.

Технология мультимедиа. Качественно новый уровень был достигнут при переходе к обработке не только текстовой и графической информации, но звука и изображений, в том числе и движущихся. Это породило мультимедийные технологии. Оснащение компьютеров устройствами ввода и вывода звуковой и видеоинформации (микрофоны, акустические системы, видеокамеры, сканеры) позволило наполнять машинную память принципиально новыми типами данных и, после соответствующей обработки, извлекать их, то есть доводить до пользователя. Сказать, что компьютер просто интегрировал в себе функции бытовых устройств (аудио- и видеомагнитофона, а также телевизора) явно недостаточно. Программное обеспечение позволяет вести обработку аудио- и видеоданных, в том числе и в режиме реального времени, а это создает предпосылки для нетрадиционного использования ресурсов компьютера.

В частности, возможно создание или воссоздание динамической трехмерной картины на экране монитора, сопровождаемой необходимыми звуковыми эффектами. Это привело к особому явлению: виртуальная реальность обеспечила подход к решению принципиально новых задач: построение компьютерных тренажеров, воспроизведение трудно моделируемых традиционными способами процессов (например, природных явлений).

Сочетание сетевых и мультимедийных технологий привело к возможности передачи по компьютерным сетям видео- и аудиоинформации. Поэтому трансляция фильмов и телепередач в сети, обмен речевыми сообщениями, организация и проведение видеоконференций стали реальностью.

Одним из ограничивающих факторов является скорость передачи информации. В качестве примера можно привести решение одного из челябинских ВУЗов, организовавших дистанционное обучение с использованием мультимедийных технологий. В их случае по сети передается звук лекции и анимационное и графическое изображение.

О серьезности таких технологий говорит тот факт, что распространение аудио- и видеозаписей в цифровом формате между пользователями сетей может существенно подорвать или уничтожить индустрию тиражирования компакт-дисков и видеокассет. Это о влиянии современных ИТ на другие отрасли современной экономики.

Технологии баз данных. Хранение информации в памяти ЭВМ давно перестало быть чем-то экзотическим. Современные автоматизированные системы позволяют накапливать и вести огромные массивы информации, а также эффективно осуществлять поиск и выдачу требуемых данных пользователям. В основу построения этих систем положена концепция баз данных. Согласно этой концепции, данные непосредственно не связаны с прикладными программами, а все операции по манипулированию ими возлагаются на специальную программу, называемую система управления базами данных (СУБД).

Современные СУБД, помимо непосредственного управления данными, организуют взаимодействие с пользователями и, обладая развитыми средствами ведения диалога, ориентированы на работу не только с профессионалами в области программирования. Особое распространение базы данных получили в период массового внедрения в практику персональных компьютеров. Появились разнообразные СУБД, разработанные для широкого круга применений, и технология баз данных стала доминирующей в сфере компьютерного хранения информации.

Распространение этой технологии на уровень сетевой среды привело к появлению распределенных баз данных (РБД) и систем управления этими базами (СУРБД). Распределенные базы данных стали основой построения географически рассредоточенных информационных систем. Их основным достоинством является возможность накопления практически неограниченных объемов информации, повышение надежности их хранения и удовлетворение запросов на выдачу данных в любую точки пространства, охватываемого сетью.

Другая ветвь развития технологии бах данных – это хранилища данных (ХД), накапливающие агрегированную информацию. Они предназначены для совместного использования с обычными БД и имеют следующие отличия. Данные из хранилищ данных не удаляются, позволяя строить временные срезы информации, например, отслеживать динамику развития каких-либо процессов. Хранимые данные агрегируют по нескольким изменениям, давая возможность оперативно предоставлять нужные данные различным категориям пользователей. При пополнении хранилищ автоматически формируются новые агрегаты данных, зависящие от старых, и пользователям может выдаваться интегрированная информация. Поддержание в хранилищах различных уровней обобщения создает предпосылки к проведению анализа «вглубь» с целью уточнения запрашиваемых данных.

Предполагается наполнять хранилища данных текстовыми, аудио-, видео- документами, включая элементы интерактивного общения. Возникает проблема хранения огромного количества информации, отдельные единицы которой могут быть востребованы с различной частотой и требования по оперативности их выдачи дифференцированы.

Технология хранилищ данных может быть распространена на уровень территориально-распределенных сетей и сами хранилища могут строиться распределенными.

Технологии моделирования. Моделирование прочно утвердилось в практике управления, научных исследований, производства, обучения. Разработка и применение моделей шагнули из области искусства в сферу промышленного освоения. В настоящее время в широком ассортименте представлены инструментальные средства, предназначенные для построения машинных моделей и проведения экспериментов на них. При этом основное внимание уделяется автоматизации процесса моделирования, начиная от конструирования модели и заканчивая обработкой экспериментальных данных.

Основными пользователями подобных систем моделирования являются не математики, а специалисты- прикладники. Процесс моделирования заключается в следующем: постановка задачи и выбор стратегии ее решения, разработка концептуальной схемы модели и ее формализация. Детализация исследуемого объекта осуществляется до требуемого уровня. Далее на компьютере идет конструирование модели из отдельных агрегатов и ее настройка на реальные условия в соответствии с исходными данными. Указывается характер получаемого результата и подлежащая выявлению зависимость результата от параметров исследуемого объекта и среды. Программа- построитель проводит сборку модели на базовом языке моделирования, а планировщик задает порядок использования модели. После этого реализуется запуск модели на компьютере и обработка результатов в соответствии с запланированным экспериментом. Пользователю выдаются интегрированные данные в виде таблиц или графиков. Сам процесс исполнения модели может быть визуализирован, то есть на экран выводятся динамически меняющиеся образы, отражающие состояния модели в любой текущий момент времени, отдельные временные срезы могут запоминаться для дальнейшего детализированного изучения, а пользователь в интерактивном режиме может вносить коррективы в сам процесс моделирования.

Технологии искусственного интеллекта. Развитие технических и программных средств неизбежно приведет к становлению новых технологий решения сложных задач управления, принятия решений, обучения и т.д.

В настоящее время ЭВМ используется для решения подобных задач только в том случае, если они хорошо структурированы, то есть известны стандартные процедуры, детально описывающие алгоритмы решения. Однако большинство задач относится к категории слабо структурированных, для которых детальное описание процесса решения не представляется возможным. Методологической основой решения задач названного класса является построение экспертных систем и систем поддержки принятия решений.

Экспертные системы предназначены для моделирования поведения опытных специалистов при решении задач по какому- либо узкому вопросу в определенной предметной областью. Такие системы призваны оказывать помощь управленцам, когда их собственных знаний, опыта и интуиции недостаточно для самостоятельного решения возникающих проблем. В идеале экспертные системы должны быть способны заменить человека в случае невозможности им своевременного и правильного принятия решения.

Перед системами поддержки принятия решений не ставят столь глобальных целей. Они предназначены для оказания помощи пользователям (работникам управленческого персонала, аналитикам) в неструктурируемых или слабострукрурируемых ситуациях выбора. Такие системы выступают в роли референта, который позволяет расширить способности человека, но не заменяет его мнение или систему предпочтений. Они предназначены для использования в ситуациях, когда процесс принятия решения невозможно полностью формализовать и реализовать на ЭВМ ввиду необходимости учета субъективного мнения.

Наиболее широкая сфера применения систем поддержки принятия решений - это планирование и прогнозирование для различных видов управленческой деятельности. В состав подобных систем должны входить методы и модели математического программирования, статистического анализа, теории игр, теории принятия решения, а также эвристические методы, обеспечивающие адаптивность и обучение самой системы. В силу наличия компонентов последнего типа системы поддержки принятия решений могут демонстрировать интеллектуальные черты и работать в условиях неполноты исходной информации, использовать вероятностные выводы, вырабатывать суждения и объяснения, выдаваемые в качестве советов.

Бурное развитие и широкое практическое применение экспертных систем и систем поддержки принятия решений прогнозируется при реальном появлении новых типов компьютерных систем, в частности, нейрокомпьютеров. Информационную базу подобных интеллектуальных систем призваны обеспечить ранее упомянутые хранилища данных.

Internet –технологии. Сеть Internet преживает настоящий бум.

Организации устанавливают связь с Internet по различным причинам - доступ к электронной почте, улучшение взаимодействия, увеличение объемов продаж и маркетинговых программ и прочее. Подключение к Internet только для доступа к электронной почте уже оправдывает себя, но вскоре многие организации обнаруживают, что они могут расширить свое присутствие в Internet при весьма небольшом увеличении затрат.

Информационные серверы используются как для внутренних, так и для внешних целей. Эти серверы могут, например, предоставлять потенциальным потребителям информацию о продуктах и услугах компании, пользователям - последние версии программного обеспечения для работы в сети, перспективным сотрудникам – новые возможности для карьеры, а потенциальным инвесторам – данные об определенной компании и ее положении на рынке.

Информационные серверы могут также предлагать новости, объявления, материалы научных исследований, информацию по различным интересующим пользователей темам и доступ к материалам, которые трудно найти где-нибудь еще.

Взаимодействие пользователя с сетью строится посредством специальных программ –«браузеров» («просмотровщиков») сети.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: