Методические указания по выполнению заданий и анализу результатов расчета

Перед выполнением задания(й) студент изучает технические способы и средства защиты зданий и сооружений от разрядов и воздействий атмосферного электричества (средства молниезащиты) по учебному пособию [7. с. 121...124], методика проектирования молниезащиты (см. выше подраздел 8.1) и инструкцию по устройс­тву молниезащиты зданий и сооружений или РД 34.21.122-87 [19], а также он знакомится со своим вариантом задания(й) из подраз­дела 8.2.

При выполнении задания N8.2.1 студент определяет по карте (см. рис. 3 РД 34.21.122-87 [19]) среднегодовую продолжительность гроз nч в часах по местонахождению здания и вычисляет N по формуле (8.2). Затем он находит по табл. 8.1 (или табл. 1 РД 34.21.122-87) требуемую категорию по молниезащите, по ко­торой устанавливает требования по ее устройству (см. п.2 под­раздела 8.1 или п.1.2 РД 34.21.122-87). После этого студент вы­бирает средство защиты от прямых ударов молнии или молниеот­вод, который в данном задании будет состоять из молниеприёмника, металлической кровли или молниеприемной сетки; токоотвода круглой формы с указанием его диаметра (см. табл. 8.3) и коли­чества токоотводов (в зависимости от периметра здания); заземлителя - фундамента здания (если он удовлетворяет требовании п. 1.8 РД 34.21.122-87) или искусственного заземлителя конс­трукции, указанной соответственно в пп. 2.13 или 2.26 данного РД. При этом он должен указать тип соединения (болтовое или сваркой) в выбранной конструкции молниеотвода и способ защиты выступающих неметаллических элементов здания (вахт, труб и т.п.). Затем студент определяет мероприятия по защите от вто­ричных проявлений молнии (если это необходимо по РД) и по за­носу высокого потенциала через различные металлические конс­трукции здания, строго руководствуясь требованиями пп. 2.7 или 2.20 и 2.21. 2.5. 2.8...2.10, 2.21...2.24, 2.32 и 2.33 РД 34.21.122-87 [19]. Как видим, в этом задании реализуются сту­дентом пп, 1...3 второго этапа и полностью третий этап проек­тирования молниезащиты, в том числе конструктивные решения по проектируемой молниезащите здания (о них см. в подразделе 8.4). Анализ результатов расчета в этом задании ведется в направлении строгого выполнения требований по устройству молниезащиты здания, установленных РД 34.21.122-87 [19].

При выполнении задания N8.2.2 студент определяет nч по карте, представленной на рис. 3 РД 34.21.122 87, N по формуле (8.2), категории по молниезащите объекта и тип зоны ее защиты по табл. 8.1 (или табл. 1 данного РД) и устанавливает требова­ния по устройству молниезащиты данной категории, т.е. реализу­ет пп. 1-го и 2-го этапа проектирования, приведенные выше в подразделе 8.1. Затем он выбирает стержневой молниеотвод (оди­ночный, двойной или многократный). Примечания. 1. При больших размерах завиваемого объекта оди­ночный стержневой молниеотвод будет значительных размеров по высоте, двойной - огромных размеров, что создаст трудности в их монтаже и обеспечении устойчивости. Поэтому чаще применяют многократный стержневой молниеотвод, не имеющий данных недос­татков.

2. Количество молниеотводов устанавливается в зависимости от длины и «ширины объекта, а также его конфигурации.

После выбора типа и количества стержневых молниеотводов студент выполняет расчет зон их защиты по соответствующим фор­мулам (8.3...8.8. 8.9...8.17 или 8.18...8.20). При этом он за­дается высотой молниеотвода h (при многократных стержневых молниеотводах она равна высоте объекта или hх плюс 4...7 м) и вычисляет все параметры зон защиты для возможных идентичных пар молниеотводов.

Примечание. В четырехстержневом молниеотводе возможными идентичными парами являются N1 - N2, N1 - N4 и N1 - N3 при размещении их по прямоугольнику, а по квадрату - N1 - N2 и N1 - N5.

Правильность выбранной величины h студент проверяет после определения hc. Если hc ³ hx, то молниеотвод высотой h обеспечивает защиту объекта по его высоте; в противном случае сту­дент увеличивает h на 2...3 м и вновь вычисляет все параметры зон защиты для идентичных пар молниеотводов. Так он действует до тех пор, пока не будет hc³hx у всех пар молниеотводов. За­тем студент, руководствуясь рис. 8.1. 8.2, 8.3 или 8.4 (на них показаны теоретические зоны защиты), вычерчивает в масштабе зону защиты (на боковом виде и на плане) рассчитанного стержневого молниеотвода для заданного объекта. После этого он ана­лизирует полученную зону защиты на рисунке (чертеже) на предмет полной защиты объекта от прямого удара молнии. Если все части объекта как в плане, так и по высоте находятся внутри зоны защиты, то обеспечена полная защита от прямого удара мол­нии на этом объекте; в противном случае студент увеличивает количество молниеотводов или их высоту и вновь ведет расчет всех параметров зон защиты для идентичных пар молниеотводов (см. выше) до достижения полной защиты объекта.

На третьем этапе проектирования студент дооформляет рису­нок (чертеж), строго руководствуясь материалами и указаниями подраздела 8.4. Затем он выбирает конструкции молниеприемника, токоотвода и заземлителя с учетом требований пп. 3.1...3.8 РД 34.21.122-87 [19] и принимает решения по защите от вторичных проявлений молнии и по заносу высокого потенциала через различные металлические конструкции объекта, строго выполняя требования вышеуказанного РД (о них см. выше в конце подраздела 8.1.).

Анализ результатов расчетов в данном задании, как видим, сводится к проверке обеспечения полной защиты объекта от прямых ударов молнии и выполнения требований по устройству всех элементов молниезащиты на объекте, которые установлены РД 34.21.122-87 [19].


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: