История Земли и жизни на ней 9 страница

Количество свободного кислорода на планете тем временем тоже увеличивается. Во второй половине венда в уже знакомых нам амфибиотических ландшафтах ("ни суша, ни море") место цианобактериальных матов, с их потрясающим по совершенству балансом в производстве и потреблении органики, занимают сообшества водорослей (главным образом - нитчатых), которые иногда называют "водорослевыми болотами". В этих болотах, чрезвычайно широко распространенных во внетропической зоне, захоранивается огромное количество неокисленной органики, а именно такая ситуация (как мы помним из главы 5) вызывает накопление свободного кислорода. По-видимому, сыграло свою роль и крупное Бойканурское оледенение, маркирующее границу венда и кембрия: мы уже помним (см. главу 6), что наличие льдов и психросферы облегчает "закачку" кислорода в глубокие слои океана, вентиляция же дна благоприятствует развитию бентоса.

И вот, наконец, содержание свободного кислорода в океанах достигает той пороговой отметки, начиная с которой становится "экономически оправданным" обзаводиться такой дорогостоящей "высокой технологией", как минеральный скелет. Эта возможность немедленно и одновременно реализуется самыми разными группами животных - от простейших (радиолярии [21] и форамениферы) и губок до членистоногих и моллюсков, - а также растений (известковые водоросли): начинается "скелетная революция" в собственном смысле. Важная деталь: как отмечает А.Ю. Розанов (1986), химический состав этих скелетов, возникающих в самом начале кембрия, настолько разнообразен, что почти полностью исчерпывает все те варианты, которые будут затем возникать на протяжении всего фанерозоя.

Самым лучшим, уникальным, местонахождением кембрийской фауны считают среднекембрийские сланцы Бёджес, открытые в 1912 г. в канадских Скалистых Горах (богатейшие местонахождения в Восточной Сибири, Китае и Гренландии изучены пока недостаточно); тип сохранности в Бёджес таков, что там могут захораниваться и "мягкие" организмы, не имевшие скелета. Так вот, оказалось, что число таких бесскелетных форм в кембрийской фауне даже больше, чем в вендской (хотя доля их теперь невелика). Это служит сильным доводом в пользу того, что в кембрии не появляется вдруг, как по мановению волшебной палочки, некая принципиально новая - "скелетная" - фауна (так иногда полагали прежде), а одевается скелетом та фауна, что уже существует - едва лишь открывается для этого возможность.

Другой неожиданный вывод следует из изучения открытых в конце восьмидесятых годов в Швеции среднекембрийских фосфатных конкреций Ёрстен. При тамошнем типе сохранности фиксируются не покровные ткани (как в Бёждес), а микроскопические щетинки и иные твердые покровные элементы, видимые лишь под сканирующим электронным микроскопом. Оказалось, что в то время существовал многочисленный и очень разнообразный микрозоопланктон - трохофоры (личинки кольчатых червей), зоеа (личинки ракообразных) и т.п. Это позволяет вновь вернуться к гипотезе А.Ю.Розанова (1986) о том, что в кембрии в действительности произошло лишь увеличение размеров уже существовавших на тот момент планктонных организмов, которые по этой причине "выпали в осадок" - перешли к бентическому образу жизни; дополнительные аргументы обретают и построения М.Б. Бурзина (см. выше) о эволюции планктонных экосистем.

Надо заметить, что мир первых скелетных организмов, сложившийся в начале кембрия (немакит-далдынский ярус), был крайне своеобразен и в чистом виде просуществовал очень недолго, лишь до середины этого периода - хотя отдельные ого представители дожили до середины ордовика. В это время уже существовали достаточно многочисленные животные, имевшие раковины (моллюски и брахиоподы) и жилые трубки (сабелидиты, хиолиты) и т.п.; разнообразнейшие мелкие зубчики - конодонты представляли собою части ротовых органов древнейших вторичноротых - щетинкочелюстных и хордовых. Весьма характерны для этого мира приапулиды (в современных морях эта реликтовая группе насчитывает лишь 20 видов), а также лобоподы (представленные ныне микроскопическими тихоходками и обитающими в подстилке влажных тропических лесов онихофорами); видимо, именно к лобоподам принадлежат многие загадочные кембрийские организмы, вроде галлюциногении (оцените название!). Имелись и и многочисленные артроподоподобные формы (см. ниже) (рисунок 25, а-д).

Основу тогдашних экосистем, однако, составляли водоросли, строившие небольшие известковые постройки - биогермы, и чрезвычайно любопытная, как считалось, вымершая группа организмов - археоциаты. Археоциаты (по-гречески - "древние кубки") представляют собой небольшие прикрепленные ко дну бокалы с двуслойной стенкой (рисунок 24); диаметр их колеблется от нескольких миллиметров до нескольких сантиметров, хотя в Сибири найдены и исполинские формы размером до 1,5 м. Природа их долго вызывала споры (неясно было даже - животные это или растения, или вообще отдельное царство), однако в последнее время почти все исследователи согласны с тем, что их следует относить к губкам. Более того - не так давно в Тихом океане была найдена странная глубоководная губка Vacletia, оказавшаяся по рассмотрении дожившим до наших дней археоциатом и пополнившая собою галерею "живых ископаемых" (вроде кистеперой рыбы или гинкго).

РИСУНОК 24. Археоциаты. (а) - Archaeocyatida, (б) - Capsulocyatida, (в) - Kazachstanicyatida, (г) - Archaeocyatida. РИСУНОК 25. Различные кембрийские животные: лобоподы (а-б), члнистоногие неясного систематического положения (в-д), трилобиты (е-ж). (а) - Xenusion; (б) - Aysheaia; (в) - Wiwaxia; (г) - Anomalacaris; (д) - Opabinia; (е) - Olenoides, (ж) -Ogygopsis.

Губки занимают совершенно обособленное положение в системе животного царства и могут быть противопоставлены всем остальным многоклеточным животным: есть веские основания считать, что они ведут свое происхождение от иной группы простейших, нежели прочие метазоа. Существует, например, остроумная и неплохо аргументированная гипотеза Й. Райтнера (1991), согласно которой губки возникают как симбиоз бактериальной колонии с хоанофлагеллятными простейшими [22]. Достигнутый губками уровень организации не позволяет назвать их многоклеточными в строгом смысле ("многотканевыми" по Корлиссу), так что вроде бы нет ничего удивительного в том, что именно эта примитивнейшая группа животных открывает собою фанерозойскую летопись. Но это только на первый взгляд.

Дело в том, что крайне низкий уровень клеточной интеграции оставляет губкам единственно возможную "профессию" - прикрепленный пассивный фильтратор органической взвеси. Любая губка (включая археоциат) представляет собою открытый сверху мешок, стенки которого пронизаны каналами; вода постоянно движется сквозь них во внутреннюю (парагастральную) полость, выходя затем наружу через верхнее отверстие (устье), а входящие в состав стенок каналов хоаноциты (воротничковые жгутиковые клетки) отфильтровывают содержащуюся в воде органику и бактерий. Вопрос для школьной олимпиады: какая сила заставляет воду двигаться сквозь каналы в неподвижной стенке? Ответ: та же самая, что создает печную тягу - разница давлений на высоте поддувала и на высоте конца трубы в соответствии с законом Бернулли [23]: если водная среда, в которой находится губка, имеет ненулевую скорость, то слой движущейся жидкости над устьем создает "подсос". Известное дело: чем выше труба - тем лучше тяга; соответственно, губка может прокачивать сквозь себя воду лишь когда ее устье приподнято над субстратом. (Сходный механизм обеспечивает вентиляцию нор сусликов и иных грызунов. Тот из выходов, через который при рытье норы выбрасывали грунт, оказывается заключен в холмик-"кротовину" и несколько приподнимается над землей; в итоге внутри норы возникает устойчивый ток воздуха от "низкого" выхода к "высокому"). Подъем же устья над субстратом можно обеспечить лишь при наличии твердого опорного скелета - органического или минерального (у современных губок есть оба варианта). Отсутствие в предшествующих отложениях этих легко обнаруживаемых скелетных элементов - спикул - свидельствует о том, что данная группа живых организмов действительно возникла лишь в начале кембрия (возможно, именно по схеме Райтнера - см. выше), т.е. когда уже несомненно существовали и настоящие многоклеточные животные.

Вся геологическая история археоцат (появление, расцвет - около 300 родов, - упадок и вымирание) укладывается в крохотный по геологическим меркам интервал в 15-20 млн. лет - случай совершенно уникальный. Уже во второй половине кембрия эта процветавшая в начале периода группа исчезает "как с белых яблонь дым", и при этом на смену ей не приходит никто - то есть конкурентное вытеснение здесь предположить трудно. Создается впечатление, что археоциаты эксплуатировали некий ресурс, который сперва был в изобилии, а затем стал резко дефицитным. Сопоставляя экологию археоциат (по аналогии с современными губками) и изложенную выше картину вендско-кембрийской биосферной перестройки можно предположить следующее. Группа эта процветала в тот относительно краткий и принципиально неустойчивый период, когда развитие пеллетного транспорта уже обогатило придонные слои кислородом, но еще не сконцентрировало большую часть органики внутри осадка; этот расклад, как полагает А.Г. Пономаренко, должен быть весьма благоприятен для "тонких" фильтраторов. Для того, чтобы эксплуатировать открывшийся ресурс, нет нужды в "квалифицированной рабочей силе" - вполне достаточно макроскопических организмов, даже не являющихся многотканевыми. Однако дальнейшее развитие ситуации с запасанием органики в осадке (что позволяет и сделать ее переработку более равномерной, и улучшить снабжение кислородом придонных слоев) резко ухудшает положение бактерий и пассивных фильтраторов, но зато благоприятствует илоедам. Время археоциат кончается, и наступает время трилобитов (рисунок 25, е-ж) [24].

Давайте теперь вернемся к графику, показывающему изменения разнообразия фауны на протяжении фанерозоя (Рисунок 23). Обсуждаемые нами события знаменуют собой формирование новой биоты, которая сохраняет достаточное единство на протяжении всего палеозоя, и гораздо более разнообразна, чем прежняя, "кембрийская" - и в таксономическом, и в экологическом отношении. В современной экологии достаточнно строго установлено, что смена эвтрофных условий на олиготрофные вызывает в экосистеме более "мелкую нарезку" экологических ниш, и соответственно, рост биологического разнообразия. Все это достаточно хорошо соответствует изложенным выше представлениям об "олиготрофизации" кембрийского океана за счет пеллетного транспорта.

В бентосе тем временем к обитателям раковин и жилых трубок добавляются существа с принципиально иными типами твердого скелета - внутренним (хордовые) и подвижным наружным (членистоногие). Ситуация с членистоногими интересна тем, что они появились позднее многих типов животного царства (во втором веке кембрия - атдабанском), однако сразу в составе практически всех своих подтипов и классов - и ракообразные, и хелицеровые, и вымершие трилобиты, и множество удивительных существ, точная систематическая принадлежность которых до сих пор неясна (рисунок 25, в-д).

Недавно стало выясняться, что ситуация с кембрийскими "членистоногими" (Arthropoda) сходна с той, что была с вендобионтами (см. главу 5): по мере изучения оказывается, что значительная часть из них не может быть отнесена к настоящим артроподам. Например, выяснилось, что у аномалакариса - самого крупного, к слову сказать, животного того времени, достигавшего в размере 70 см - ротовые части состоят из четырех концентрически сходящихся лепестков, образующих нечто вроде зажимов цангового карандаша (рисунок 25, г). Эти лепестки никоим образом не могут представлять собою видоизмененные конечности, что является одним из ключевых диагностических признаков типа членистоногих.

По всей видимости, целый ряд неродственных между собой групп начинает в это время независимо приобретать отдельные признаки членистоногих, и в результате они независимого достигают артроподного уровня организации. Подробнее о процессах параллельной эволюции, подобных этой "артроподизации", мы поговорим позже (в главе 12), пока же для нас существенно лишь само возникновение принципиально нового типа скелета, обладатели которого начинают играть ключевую роль в формирующихся экосистемах. Так, трилобиты становятся, по-видимому, основными потребителями того самого "упакованного" органического детрита, обогащающего донные осадки, и могут считаться настоящей эмблемой палеозоя.

К середине кембрия продуктивность и биологическое разнообразие достигают такого уровня, что у экосистем возникает нужда в "управляющем блоке" - верхних трофических уровнях, представленных специализированными хищниками-макрофагами. И вот начинается интереснейший процесс - борьба за этот "государственный военный заказ" между несколькими, самыми мощными, "корпорациями" - наиболее эволюционно продвинутыми группами животных. Из курса зоологии вам должно быть известно, что самыми высокоорганизованными среди первичноротых являются членистоногие и моллюски, а вершину эволюции вторичноротых представляют собой позвоночные. Именно эти группы и начинают соревнование за открывшуюся вакансию.

Первыми успеха добились членистоногие и близкие к ним артроподоподобные формы. Самым крупным хищником тех времен был аномалокарис; хищниками, как считают сейчас многие исследователи, были и самые первые трилобиты - лишь позднее эта группа перешла к детритофагии [25]. Однако вскоре вперед вырвались моллюски: появившиеся в конце кембрия головоногие (это были малоподвижные формы, родственные современному наутилусу, но с незакрученной конической раковиной, так называемые прямые головоногие) безраздельно господствовали в придонных слоях океана примерно до середины силура; на ордовик приходится пик видового разнообразия этой группы животных (около 150 родов). Хищники из числа членистоногих (ракообразные и водные хелицеровые - мечехвосты и ракоскорпионы) и позвоночных (бесчелюстные - родственики современных миног) оказываются "неконкурентоспособными" и занимают в экосистемах подчиненное положение.

Положение меняется в силуре, когда среди членистоногих появились крупноразмерные ракоскорпионы, а среди позвоночных - первые челюстноротые (настоящие рыбы). Судя по всему, обе эти группы возникли в опресненных прибрежных акваториях (типа лагун): здесь они были на первых порах избавлены от конкуренции с головоногими, которые избегают участков моря, "отравленных" стекающими с суши пресными водами. Именно в это время ракоскорпионы (например, Pterygotus) достигают длины свыше 2 м (а если с клешнями - то почти 3) и становятся властелинами силурийских морей - по крайней мере, их прибрежных участков (рисунок 26). Прямые головоногие не выдерживают конкуренции, и их разнообразие заметно сокращается; попытки спастись за счет гигантизма (раковины Endoceras, например, достигали 4 м в длину - хотя сам моллюск был, понятное дело, много меньше) не имели успеха.

РИСУНОК 26. Самые страшные хищники раннего палеозоя - ракоскорпион и динихтис.

Однако торжество членистоногих (в лице ракоскорпионов) оказалось недолгим, и виною тому была третья "конкурирующая корпорация" - позвоночные. До сих пор те держались в тени, и использовали лишь стратегию пассивной защиты - создание мощной наружной "брони"; таковы были панцирные бесчелюстные - остракодермы, и панцирные рыбы - плакодермы. И вот в девоне одна из групп плакодерм - артродиры - отказалась от "бронирования корпуса" в обмен на скорость и перешла к активному хищничеству. Вот тогда-то и проявились все те - до поры скрытые - преимущества, что возникли ранее в результате превращения первой пары жаберных дуг в подвижные челюсти - великолепное средство нападения и защиты. Существа эти могли увеличивать размеры тела практически неограниченно: такие артродиры, как динихтис достигали 10 м в длину - одни из самых крупных рыб за всю историю (рисунок 26), тогда как ракоскорпионы уже "уперлись" в физиологический предел размеров для членистоногих. В итоге артродиры стали для того времени фактически "абсолютным оружием", превосходя любого противника и по вооружению, и по скорости.

Членистоногие проиграли позвоночным эту схватку за крупный размерный класс вчистую: ничего подобного двухметровым силурийско-раннедевонским ракоскорпионам среди них не появится уже никогда. Отныне они будут методично осваивать малый и средний размерный классы (длина тела самых крупных членистоногих - камчатского краба и мечехвоста - не превышает 70 см), в чем и преуспеют: это, как-никак, самый процветающий ныне тип животного царства. А вот головоногие сумели тогда дать позвоночным достойный эволюционный ответ: хотя численность придонных прямых головоногих продолжала сокращаться, суммарное разнообразие группы начиная с середины девона (эмский век) стремительно пошло вверх. К концу периода (фаменский век) оно достигло своего максимума (почти 200 родов) благодаря появлению свернутых головоногих, имеющих спирально закрученную раковину - аммонитов.

Дело в том, что прямые наутилоидеи обладали достаточно совершенным аппаратом регулирования плавучести (они меняли заполнение водою пустых камер раковины - в точности как подводная лодка заполняет и опорожняет балластные цистерны), но вот с горизонтальными перемещениями у них были большие проблемы. Головоногие движутся реактивным способом, выталкивая воду из мантийной полости через воронку, направленную вперед и располагающуюся в районе головы. Первые наутилоидеи "висели" вниз головой в придонных слоях воды и могли лишь "падать" на свою добычу сверху (рисунок 27, а). В дальнейшем они "завалили" раковину, сместив центр ее тяжести за счет неравномерного отложения карбоната кальция (на брюшной стороне больше, чем на спинной); вся конструкция в результате обрела способность к продольному движению (рисунок 27, б). Однако эта конструкция принципиально неустойчива в движении, т.к. центр тяжести и точка приложения реактивной тяги (воронка) должны находиться на противоположных концах тела животного: малейшее отклонение от линии тяги - и движущийся моллюск начнет кувыркаться. А вот у свернутых головоногих центр тяжести их спиральной раковины почти совпадает с сифоном, что и обеспечивает устойчивое продольное движение. Именно поэтому свернутые головоногие стали первой группой хищников, освоивших толщу воды. (Здесь необходимо заметить, что рыбы, например, будут продолжать "ходить по дну" почти до середины мезозоя: лишь тогда костные рыбы "изобретут" плавательный пузырь, а среди хрящевых рыб - появятся акулы современного типа, которые "не тонут" из-за того, что находятся в постоянном движении.) Видимо, именно освоение трехмерного пространства привело к возникновению у позднепалеозойских головоногих самых совершенных (среди беспозвоночных) глаз и чрезвычайно усложненного мозга - то же самое, что произойдет позднее с птицами.

РИСУНОК 27. Палеозойские и мезозойские головоногие: (а) - исходная жизненная форма головоногих (архаичная наутилоидея Mandaloceras); (б) - прямое головоногое (наутилоидея Michelinoceras); (в) - свернутое головоногое (аммонит); (г) - внутренераковинное головоногое (белемнит и его раковинвина - "чертов палец").

Головоногие будут и дальше, на протяжении всего мезозоя, формировать верхние трофические уровни морских экосистем, успешно конкурируя не только с рыбами, но и с морскими рептилиями (ихтиозаврами, плезиозаврами и пр. - см. далее, главу 10). Многие из этих рептилий сами охотились на головоногих (в раковинах крупных аммонитов иногда находят застрявшие зубы этих хищников), а те в основном использовали стратегию пассивной защиты - увеличивая размеры тела. К юре аммониты достигли максимального своего размера, однако с появлением короткошейных плезиозавров - плиозавров, черепа которых достигали 3 м в длину, - эта стратегия себя исчерпала. Аммониты начали мельчать, пытаясь уйти за нижний предел оптимального размера жертвы (см. главу 6-а) [26], а разнообразие их - уменьшаться.

И вновь головоногие нашли выход: с этого времени начинается расцвет групп, имеющих внутреннюю раковину - белемнитов и происходящих от них кальмаров. Вообще-то белемниты появились еще в карбоне, однако до сих пор они пребывали на вторых ролях. Теперь же, когда возможности пассивной защиты оказались исчерпаны, стратегия белемнитов - отказ от раковины в обмен на увеличение скорости передвижения - оказывается генеральной линией эволюции головоногих. Судя по всему, внутреннераковинные головоногие оказались самыми скоростными обитателями мезозойского океана; они, казалось бы, должны столкнуться с тою же проблемой устойчивости в движении, что и прямые головогоногие (см. выше), однако их тело, лишенное раковины, способно выравнивать "полет" при помощи плавников-стабилизаторов (рисунок 27, г). При этом отсутствие таких ограничителей роста, как твердые покровы членистоногих, позволяет им достигать очень крупных размеров. Современный гигантский кальмар достигает в длину 18 м (со щупальцами) и является самым крупным беспозвоночным (на коже китов находили отпечатки присосок кальмаров, длина которых оценивается в 30 м), а ведь в прошлом вполне могли существовать и более крупные виды! Как бы то ни было, внутреннераковинные головоногие успешно дожили до наших дней и вымирать явно не собираются. Достаточно сказать, что в пробах грунта из глубоководных частей Тихого океана число челюстей кальмаров на один квадратный метр варьирует от нескольких десятков до нескольких сотен, что дает некоторое представление о численности (и экологической роли) этих животных в современных морях.

РИСУНОК 28. Челюсти ископаемой акулы Carcharodon megalodon.

Изменения в сообществе водных позвоночных мы подробнее проанализируем чуть позже, в главе 11. Здесь же мы лишь отметим, что с начала триаса верхние трофические уровни морских экосистем оказываются совершенно закрытыми для рыб: их формируют недавние вселенцы в море - хищные рептилии. Однако во второй половине мезозоя (примерно в одно время с началом расцвета внутреннераковинных головоногих) рыбы возвращают себе лидирующие позиции: в морях появились акулы современного типа - с челюстью, подвижной относительно мозговой капсулы, что позволяет им отрывать куски от жертвы большого размера (например, кита), а не глотать ее целиком [27]. Именно они, возможно, конкурентно вытеснили по крайней мере часть морских рептилий (например, ихтиозавров). Самые крупные акулы жили в миоцене: Carcharodon megalodon (близкая родственница знаменитой белой акулы) достигала в длину 30 м; питалось это чудовище, по всей видимости, небольшими китами, пик разнообразия которых приходится как раз на время ее существования (рисунок 28). Самые же крупные из современных хищных акул [28] (белая, тигровая) питаются в значительной степени другими акулами, являясь, таким образом, подлиным венцом трофической пирамиды.

8. Ранний палеозой: "выход жизни на сушу". Появление почв и почвообразователей. Высшие растения и их средообразующая роль. Тетраподизация кистеперых рыб.

Вплоть до самого недавнего времени человек выносил из школьного учебника биологии и популярных книг по теории эволюции такую примерно картину события, именуемого обычно "Выходом жизни на сушу". В начале девонского периода (или в конце силурийского) на берегах морей (точнее - морских лагун) появились заросли первых наземных растений - псилофитов (рисунок 29, а), положение коих в системе растительного царства остается не вполне ясным. Растительность сделала возможным появление на суше беспозвоночных животных - многоножек, паукообразных и насекомых; беспозвоночные, в свою очередь, создали пищевую базу для наземных позвоночных - первых амфибий (ведущих свое происхождение от кистеперых рыб) - таких, как ихтиостега (рисунок 29, б). Наземная жизнь в те времена занимала лишь чрезвычайно узкую прибрежную полоску, за которой простирались необозримые пространства абсолютно безжизненных первичных пустынь.

РИСУНОК 29. (а) - Реконструкция ландшафта Райни (девон Шотландии) с зарослями псилофитов; (б) - древнейшее наземное позвоночное - ихтиостега (девон Гренландии).

Так вот, согласно современным представлениям, в означенной картине неверным (или, по меньшей мере, неточным) является практически всё - начиная с того, что достаточно развитая наземная жизнь достоверно существовала много раньше (уже в следующем за кембрием ордовикском периоде), и кончая тем, что упомянутые "первые амфибии" наверняка были существами чисто водными, не имеющими связи с сушей. Дело, однако, даже не в этих частностях (о них мы поговорим в свой черед). Важнее другое: скорее всего, принципиально неверна сама формулировка - "Выход живых организмов на сушу". Есть серьезные основания полагать, что сухопутные ландшафты современного облика в те времена вообще отсутствовали, и живые организмы не просто вышли на сушу, а в некотором смысле создали ее как таковую. Впрочем, давайте по порядку.

Итак, первый вопрос - когда; когда же все-таки на Земле появились первые несомненно наземные организмы и экосистемы? Однако тут сразу возникает встречный вопрос: а как определить, что некий вымерший организм, с которым мы столкнулись - именно наземный? Это вовсе не так просто, как кажется на первый взгляд, ибо принцип актуализма здесь будет работать с серьезными сбоями. Типичный пример: начиная с середины силурийского периода в палеонтологической летописи появляются скорпионы - животные по нынешним временам вроде бы сугубо сухопутные. Однако сейчас уже достаточно твердо установлено, что палеозойские скорпионы [29] дышали жабрами и вели водный (или, по крайней мере, амфибиотический) образ жизни; наземные же представители отряда, у которых жабры превращены в характерные для паукообразных легкие "книжечного" типа (book-lungs), появились лишь в начале мезозоя. Следовательно, находки в силурийских отложениях скорпионов сами по себе ничего (в интересующем нас плане) не доказывают.

Более продуктивно здесь, как кажется, отслеживать появление в летописи не наземных (по нынешним временам) групп животных и растений, а определенных анатомических признаков "сухопутности". Так, например, растительная кутикула с устьицами и остатки проводящих тканей - трахеид наверняка должны принадлежать наземным растениям: под водой, как легко догадаться, и устьица, и проводящие сосуды ни к чему... Однако существует и иной - воистину замечательный! - интегральный показатель существования в данное время наземной жизни. Подобно тому, как показателем существования на планете фотосинтезирующих организмов является свободный кислород, показателем существования наземных экосистем может служить почва: процесс почвообразования идет только на суше, а ископаемые почвы (палеопочвы) хорошо отличимы по структуре от любых типов донных отложений.

Надо заметить, что почва сохраняется в ископаемом состоянии не слишком часто; лишь в последние десятилетия на палеопочвы перестали смотреть как на некую экзотическую диковинку и начали их систематическое изучение. В итоге в изучении древних кор выветривания (а почва есть не что иное, как биогенная кора выветривания) произошла подлинная революция, буквально перевернувшая прежние представления о жизни на суше. Самые древние палеопочвы найдены в глубоком докембрии - в раннем протерозое; в одной из них, имеющей возраст 2,4 млрд лет, С. Кемпбелл (1985) обнаружил несомненные следы жизнедеятельности фотосинтезирующих организмов - углерод со смещенным изотопным отношением 12С/13С. В этой связи можно упомянуть и обнаруженные недавно остатки цианобактериальных построек в протерозойских карстовых полостях: процессы карстования - образование котловин и пещер в водорастворимых осадочных породах (известняки, гипсы) - могут идти только на суше.

Другим фундаментальным открытием в этой области следует считать обнаружение Г. Реталляком (1985) в ордовикских палеопочвах вертикальных норок, прорытых какими-то достаточно крупными животными - видимо, членистоногими или олигохетами (дождевыми червями) [30]; в этих почвах нет никаких корней (которые обычно сохраняются очень хорошо), но есть своеобразные трубчатые тельца - Реталляк интерпретирует их как остатки несосудистых растений и/или наземных зеленых водорослей. В несколько более поздних, силурийских, палеопочвах найдены копролиты (окаменевшие экскременты) каких-то почвообитающих животных; пищей им, судя по всему, служили гифы грибов, составляющие заметную долю вещества копролитов (впрочем, не исключено, что грибы могли и вторично развиться на органике, содержащейся в копролитах).

Итак, к настоящему моменту два факта могут считаться установленными достаточно твердо:

  1. Жизнь появилась на суше очень давно, в среднем докембрии. Она была представлена, судя по всему, различными вариантами водорослевых корок (в том числе - амфибиотическими матами) и, возможно, лишайниками [31]; все они могли осуществлять процессы архаичного почвообразования.
  2. Животные (беспозвоночные) существовали на суше по меньшей мере с ордовика, т.е. задолго до появления высшей растительности (чьи достоверные следы по-прежнему остаются неизвестными до позднего силура). Средой обитания и пищей этим беспозвоночным могли служить упомянутые выше водорослевые корки; при этом сами животные неизбежно становились мощным почвообразующим фактором.

Последнее обстоятельство заставляет вспомнить одну старую дискуссию - о двух возможных путях заселения суши беспозвоночными. Дело в том, что неморские ископаемые этого возраста были очень редки, и все гипотезы на сей предмет казались лишь более или менее убедительными спекуляциями, не подлежащими реальной проверке. Одни исследователи предполагали, что животные вышли из моря напрямую - через литораль с водорослевыми выбросами и иными укрытиями; другие настаивали на том, что сперва были заселены пресноводные водоемы, и лишь с этого "плацдарма" началось впоследствии "наступление" на сушу. Среди сторонников первой точки зрения выделялись своей убедительностью построения М.С. Гилярова (1947), который, основываясь на сравнительном анализе адаптаций современных почвообитающих животных, доказывал, что именно почва должна была служить первичной средой обитания самых ранних жителей суши [32]. При этом надо учитывать, что почвенная фауна действительно крайне плохо попадает в палеонтологическую летопись и отсутствие ископаемых "документов" здесь вполне объяснимо. У этих построений, однако, был один по-настоящему уязвимый пункт: а откуда же взялась сама эта почва, если в те времена еще не было наземной растительности? Всем ведь известно, что почвообразование идет при участии высших растений - сам Гиляров называл настоящими почвами лишь те, что связаны с ризосферой, а все прочее - корами выветривания... Однако теперь - когда стало известно, что примитивное почвообразование возможно и с участием одних лишь низших растений - концепция Гилярова обрела "второе дыхание", а недавно была впрямую подтверждена данными Реталляка по ордовикским палеопочвам.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: