Поляризация диэлектриков

Поляризация – это ограниченное смещение связанных зарядов или ориентация дипольных молекул в электрическом поле. Электрическая поляризация приводит к тому, что суммарный электрический момент объема вещества становится отличным от нуля.

В любом материале, независимо от наличия или отсутствия в нем свободных носителей заряда, всегда имеются связанные заряды: электроны оболочек атомов, ионы. Под действием внешнего электрического поля связанные заряды в диэлектрике смещаются из своих равновесных состояний по направлению действующих сил в зависимости от величины напряженности поля. В результате этого каждый элементарный объем диэлектрика dV приобретает индуцированный электрический момент dp. Образование индуцированного электрического момента Р в диэлектрике и представляет собой явление поляризации. Мерой поляризации диэлектрика является вектор поляризации (поляризованность, интенсивность поляризации), который равен отношению индуцированного электрического момента объема диэлектрика к этому объему, когда последний стремится к нулю:

(2)

При отсутствии электрического поля заряды возвращаются в прежнее состояние.

Большинство диэлектриков характеризуются линейной зависимостью электрического смещения (Д) от напряженности электрического поля (Е), приложенного к диэлектрику (линейные диэлектрики, рис.6).

Особую группу составляют диэлектрики, в которых с изменением напряженности поля смещение меняется нелинейно (рис.6), достигая насыщенного состояния при некотором значении напряженности электрического поля. При уменьшении напряженности поля вектор электрического смещения уменьшается и при отсутствии поля остается остаточное электрическое смещение (До). Такие диэлектрики называются сегнетоэлектриками.

Наименование «сегнетоэлектрик» связано с тем, что нелинейность поляризации впервые была обнаружена у сегнетовой соли. За рубежом данная группа материалов называется ферроэлектриками.

Рис.6. Зависимости электрического смещения от напряженности электрического поля

В результате поляризационных процессов внутри диэлектрика образуется внутреннее электростатическое поле определенного заряда, направленное встречно внешнему электрическому полю (рис.7).

В связи с этим любой диэлектрик с нанесенными на него электродами, включенный в электрическую цепь, может рассматриваться как конденсатор определенной емкости.

Рис.7. Диэлектрик в электрическом поле

Заряд конденсатора, как известно, равен:

, (3)

где С – емкость конденсатора, U – приложенное напряжение.

Заряд Q при заданном значении приложенного напряжения обусловлен зарядом Qо, который присутствовал бы на электродах, если бы их разделял вакуум, и зарядом Qд, возникшем вследствие поляризации диэлектрика, фактически разделяющем электроды:

(4)

Одной из важнейших характеристик диэлектрика является его относительная диэлектрическая проницаемость. Эта величина представляет собой отношение заряда Q, полученного при некотором напряжении на конденсаторе, содержащем данный диэлектрик, к заряду Qо, который можно было бы получить в конденсаторе тех же размеров и при том же напряжении, если бы между электродами находился вакуум:

(5)

Из выражения (5) следует, что относительная диэлектрическая проницаемость любого диэлектрика больше единицы и равна единице только для вакуума.

С учетом формулы (3) соотношение (5) может быть представлено в виде:

(6)

где Со – емкость вакуумного конденсатора (геометрическая емкость).

Следовательно, из выражения (6):

(7)

Величина относительной диэлектрической проницаемости (далее ) показывает во сколько раз емкость конденсатора с диэлектриком больше емкости конденсатора такой же геометрической конфигурации, у которого между обкладками находится вакуум. Следовательно, величина диэлектрика определяет величину емкости электро – и радиотехнических конструкций:

, (8)

где о – абсолютная диэлектрическая проницаемость вакуума, равная 8,85·10-12 Ф/м, – геометрический фактор.

Вернуться к содержанию


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: