Заключение. В последние годы произошел прорыв в структурных исследованиях рибосом и рибосомных субчастиц

В последние годы произошел прорыв в структурных исследованиях рибосом и рибосомных субчастиц. В ходе исследований строения рибосом были усовершенствованы методы рентгеноструктурного анализа, что позволило описывать с атомарным разрешением взаимодействие рибосомы с белками, управляющими ее работой, и с молекулами тРНК, а также изменения, происходящие в структуре рибосомы в процессе синтеза белка.

Это позволяет по новому взглянуть на процесс биосинтеза белка и соотнести накопленные к настоящему времени биохимические данные со структурными. Особый интерес полученные результаты имеют для исследования РНК-белковых взаимодействий, которые до сих пор изучены достаточно слабо. Модели рибосомы дают весомую базу для анализа РНК-белковых взаимодействий, классификации типов укладок РНК и типов РНК-белковых контактов.

На сегодняшний день рибосомы — самые большие несимметричные макромолекулярные комплексы с установленной структурой (строение вирусов изучать легче в связи с их симметричностью). Можно ожидать, что в дальнейшем рентгеноструктурный анализ будет успешно применен и для исследования строения и работы других крупных макромолекулярных комплексов, например сплайсосом, вырезающих из предшественников информационной РНК некодирующие последовательности (интроны).

Около двух третей массы рибосомы составляет РНК, а около трети — белки. Исследования строения и работы рибосом показали, что функциональную нагрузку в рибосомах несет, прежде всего, РНК. Таким образом, рибосомы — это, по сути, гигантские рибозимы (каталитически активные РНК; ранее считалось, что роль катализаторов могут выполнять только белки). Это открытие говорит в пользу гипотезы, согласно которой на первых этапах существования жизни она представляла собой «мир РНК»: молекулы РНК обеспечивали и хранение наследственной информации, и управление химическими процессами, необходимыми для считывания и воспроизведения этой информации; впоследствии эти функции в ходе эволюции были переданы соответственно ДНК и белкам.

Представления о структуре рибосом находят и непосредственное практическое применение. Многие антибиотики, используемые для лечения инфекционных заболеваний, действуют за счет подавления работы бактериальных рибосом. В лабораториях Йонат, Рамакришнана и Стейца были получены данные о механизме действия ряда таких антибиотиков. Эти данные уже сегодня используются для разработки новых и совершенствования существующих антибиотиков. Задача эта весьма актуальна, поскольку болезнетворные бактерии непрерывно эволюционируют, вырабатывая устойчивость к используемым в медицинской практике средствам, и фармацевтике нельзя отставать от бактерий в этой непрерывной «гонке вооружений».

Список литературы:

1. Watson J.D., Crick F.H.C. Molecular structure of nucleic acids // Nature. 1953. V. 171. P. 738-740.

2. Watson J.D., Crick F.H.C. Genetic implications of the structure of deoxyribose nucleic acid // Nature 1953 V. 171. P. 964-967.

3. G.E. Palade. (1955) «A small particulate component of the cytoplasm.» J Biophys Biochem Cytol. Jan;1(1): pages 59-68.

4. Roberts, R. B. (1958) «Introduction» in Microsomal Particles and Protein Synthesis. New York: Pergamon Press.

5. Nature 2013.Andreas Anger et al. Structure of the human and Drosophila 80S ribosome.

6. Спирин А.С. Молекулярная биология. Структура рибосомы и биосинтез белка, 1986.

7. Грайфер Д.М., Моор Н.А. Биосинтез белка: учебное пособие. /Новосиб.гос.ун-т. Новосибирск, 2011.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: