для метаболизма уровень газов в организме

Саморегуляция дыхания осуществляется деятельностью специальной функциональной системы, которая включает несколько подсистем саморегуляции со своими приспособительными для организма результатами. Ведущим, конечным результатом деятельности данной функциональной системы является поддержание оптимального для метаболизма тканей организма соотношения газов: С02/02. По конечному приспособительному результату данная функциональная система называется функциональной системой, определяющей оптимальный для метаболизма уровень газов в организме.

Результат деятельности функциональной системы дыхания. Результат деятельности данной функциональной системы является многопараметренным. Он включает парциальное напряжение в тканях кислорода (р02) и двуокиси углерода (рСО2).С последним показателем тесно связана реакция тканей и крови (рН). Все эти три показателя тесно взаимосвязаны.

Функциональная система дыхания, как и многие другие функциональные системы гомеостатического уровня, имеет предконечный, тесно связанный с конечным, результат – уровень р02, рС02 и рН в крови. Это защитное, предохранительное для организма свойство функциональной системы дыхания: поддержание показателей р02, рС02 и рН в крови – надежная гарантия устойчивого метаболизма в тканях.

Показатели газового гомеостазиса находятся в тесной связи с другими показателями внутренней среды, в частности с температурой, уровнем кровяного, осмотического давления и др. Взаимодействие различных показателей внутренней среды, обеспечиваемое деятельностью различных специфических функциональных систем, также строится по мультипараметрическому принципу взаимодействия, определяя тем самым динамическое состояние гомеостазиса в целом.

Хеморецепторы газовых показателей. Хеморецепторы, включенные в деятельность функциональной системы дыхания, специфичны. Они реагируют только на изменения газовых показателей крови и тканей. Периферические хеморецепторы газовых показателей располагаются в сосудистой стенке практически любых тканей организма (В.Н.Черниговский, Б.И.Ткаченко). На это указывают опыты с перфузией изолированных органов, сохранивших с организмом нервные связи, растворами с повышенным содержанием двуокиси углерода или сниженным содержанием кислорода. В этом случае наблюдается отчетливая дыхательная реакция экспериментальных животных; гиперпноэ в первом случае и гипопноэ, вплоть до апноэ, во втором. Значительное количество хеморецепторов газовых показателей крови находится в дуге аорты. Снижение напряжения кислорода в артериальной крови ниже 50-60 мм.рт.ст. сопровождается увеличением вентиляции легких уже через 3-5 с. Наиболее изучены хеморецепторы каротидного тельца в области бифуркации общей сонной артерии на внутреннюю и внешнюю. Каротидные тельца представлены в виде крупных эпителиоидных клеток I типа и мелкими интерстициальными клетками II типа. С клетками I типа контактируют окончания афферентных волокон синусного нерва (нерв Геринга), который является веточкой языкоглоточного нерва. Каротидные тельца обильно васкуляризированы. Наличие в синокаротидной области хеморецепторов газовых показателей снова доказывают эксперименты с перфузией гипоксическими и гиперкапническими растворами изолированной и сохранившей с организмом только нервные связи синокаротидной области.

Особую группу составляют центральные хеморецепторы газовых показателей. Наличие в ЦНС таких рецепторов доказывает уже описанный классический опыт Фредерика с перекрестным кровообращением. Современные исследования показывают, что центральные хеморецепторы газовых показателей располагаются у вентральной поверхности продолговатого мозга на глубине около 0,2 мм. Кроме того, нейроны, чувствительные к изменению уровня двуокиси углерода в крови, обнаружены в ретикулярной формации продолговатого и среднего мозга (Е.Л.Голубева). Центральные хеморецепторные нейроны обильно васкуляризированы. Центральные хеморецепторы обозначают как хеморецепторные триггерные зоны.В этом названии заключена пусковая роль этих рецепторов в саморегуляции процессов дыхания. Хеморецепторы синокаротидных телец преимущественно реагируют на снижение в крови уровня кислорода. Центральные хеморецепторы преимущественно реагируют на изменения в спинномозговой жидкости рН и рС02.

Информация о состоянии периферических и центральных рецепторов газовых показателей, возбужденных прямым гуморальным или опосредованно – нервным путем, наряду с влияниями высших отделов дыхательного центра распространяется к исполнительным механизмам дыхательного центра, в результате чего в деятельность функциональной системы дыхания включаются ее внутреннее и внешнее звенья саморегуляции.

Исполнительные механизмы функциональной системы. Для обеспечения своего жизненно важного для организма результата функциональная система дыхания включает внутреннее, внешнее и поведенческое звенья саморегуляции.

Внутреннее звено саморегуляции функциональной системы дыхания осуществляется за счет внутренних, генетически детерминированных вегетативных механизмов.

Внешнее звено связано с потреблением кислорода из окружающего воздуха и выделением в окружающую среду двуокиси углерода. Внешнее звено саморегуляции функциональной системы дыхания тесно связывает организм с окружающей средой, факторы которой, в частности газовый состав, можно рассматривать как неотъемлемую часть живого организма.

Поведенческое звено саморегуляции функциональной системы дыхания проявляется, как правило, только в экстремальных условиях жизнедеятельности, связанных с уменьшением содержания кислорода в окружающей среде или накоплением в ней двуокиси углерода. Результаты поведения направлены в этом случае на обеспечение нормального для жизнедеятельности организма газового состава окружающего воздуха.

В нормальных условиях существования при содержании в окружающей среде кислорода до 21 % и двуокиси углерода 0,03 % саморегуляция дыхания осуществляется относительно пассивно за счет деятельности внешнего звена; потребление кислорода – из достаточно обеспеченной кислородом окружающей среды и свободного выделения в нее двуокиси углерода.

Внутреннее звено саморегуляции функциональной системы дыхания. Внутреннее звено саморегуляции функциональной системы дыхания активно включается у человека при длительной произвольной задержке дыхания или в экспериментальных условиях у животных при гипоксии или асфиксии.

Поскольку критическая ситуация гипоксии, и особенно асфиксии, требует максимальной мобилизации организма, внутреннее звено саморегуляции функциональной системы дыхания представлено деятельностью многочисленных органов.

Во внутреннее звено саморегуляции функциональной системы дыхания включается деятельность сердца: изменяется частота и сила сердцебиений, систолический и минутный объем. Как следствие изменений сердечной деятельности изменяется скорость кровотока и величина кровяного давления. Меняются свойства крови: количество эритроцитов, гемоглобина, кислородная емкость крови, сродство гемоглобина к кислороду и т.д. Активируется эритропоэз. Накапливающаяся в организме при гипоксии и асфиксии двуокись углерода активно выделяется почками и секретами пищеварительных желез, а также путем потоотделения. При этом активно включаются гормональные механизмы.

Этот процесс определяет накопление в организме биологически активных веществ, прямо влияющих на интенсивность метаболических процессов. Опыты показывают, что пережившие глубокую асфиксию животные и возвращенные к жизни путем искусственного дыхания приобретают устойчивость даже к газовой эмболии.

С другой стороны, установлено, что адаптация к периодическому действию гипоксии обладает антиаритмическим эффектом (Ф.3.Меерсон). По-видимому, при гипоксии в организме появляются специальные факторы устойчивости организма. Возможно, с помощью этих факторов индийские йоги путем специальных гипоксических упражнений приобретают способность к длительной остановке дыхания.

Внешнее звено саморегуляции функциональной системы дыхания. Это звено саморегуляции функциональной системы дыхания связано с потреблением кислорода из окружающей среды и выделением в нее двуокиси углерода. Процессы поглощения кислорода и выделения двуокиси углерода осуществляются с помощью легочного аппарата. Как правило, функциональная система дыхания в нормальных условиях существования определяет свою деятельность за счет этого звена саморегуляции и включает внутреннее и поведенческое звенья только в экстремальной ситуации.

Внешнее звено саморегуляции имеет и свой полезный приспособительный результат. Им является сохранение постоянного состава альвеолярного воздуха. В поддержании этого полезного для организма показателя особо важная роль принадлежит двуокиси углерода. Показано, что только изменение двуокиси углерода в альвеолярном воздухе приводит к существенным изменениям легочной вентиляции. Изменений легочной вентиляции не наблюдается при уменьшении в альвеолярном воздухе уровня кислорода при сохранении неизменного уровня двуокиси углерода.

Регуляция поступления 02 в организм и выделение С02 осуществляется за счет изменения глубины и частоты дыхания. Этот процесс определяют и показатели жизненной емкости легких (ЖЕЛ).

Процессы саморегуляции вдоха и выдоха лучше всего прослеживаются на примере первого вдоха новорожденного.

Первый вдох новорожденного. Как известно, плод, получая кислород через плацентарное кровообращение от организма матери и выделяя в кровь матери двуокись углерода, активно не использует внешнее звено саморегуляции дыхания. Его внешний газовой средой является организм матери, с которым он сохраняет общий кровоток. После перевязки пуповины у новорожденного в его организме, как следствие, происходит снижение уровня кислорода и накопление двуокиси углерода. Ведущим фактором первого вдоха является накопление двуокиси углерода. Двуокись углерода, накопившаяся в крови, начинает действовать на периферические рецепторы тканей и сосудов. Воспринимаемый центральными хеморецепторами повышенный уровень двуокиси углерода и сопутствующее ему снижение уровня рН (ацидоз) является причиной возбуждения инспираторных нейронов, расположенных в дорсальном дыхательном ядре продолговатого мозга, около задвижки. Инспираторные нейроны дорсального дыхательного ядра связаны своими аксонами с мотонейронами спинного мозга, иннервирующими диафрагму и наружные межреберные мышцы.

Системная деятельность дыхательного центра. Инспираторные нейроны в их совокупности на разных уровнях организма дыхательного центра постоянно получают информацию от хеморецепторов о дыхательной потребности организма. С другой стороны, как указывалось выше, на них действуют дополнительные факторы, связанные с состоянием организма: температура, афферентация о деятельности дыхательных и других мышц, импульсация от альвеол, эмоциональное состояние – например, боль, высшие психические влияния, связанные с социальной деятельностью человека (пение, чтение лекций и др.).

Все это определяет процессы афферентного синтеза в функциональной системе дыхания. В результате афферентного синтеза инспираторные нейроны дыхательного центра на основе молекулярных процессов «принимают решение» взять потребное количество воздуха. Это «решение» в форме нервных импульсаций адресуется к дыхательному мышечному аппарату.

Таким образом, в функциональной системе дыхания на основе нервных и гуморальных кодов все время оценивается дыхательная потребность. С помощью аппарата акцептора результата действия она постоянно сопоставляется с количеством и качеством поступившего в легкие воздуха. Эти процессы осуществляются бессознательно. Дыхательный акт автоматизирован. Однако в любых случаях изменения деятельности этого механизма (например, при поступлении в организм воздуха, по объему не соответствующего дыхательной потребности) включаются механизмы сознательной деятельности человека, в частности поведение.

Поведенческое звено саморегуляции функциональной системы дыхания. Поведенческое звено саморегуляции функциональной системы дыхания включается, как правило, только в так называемых экстремальных ситуациях, когда организм по каким-либо причинам не может самостоятельно, за счет внутренних механизмов саморегуляции, длительно оптимально удовлетворять свои дыхательные потребности. Примером является нахождение большого количества людей в ограниченном пространстве. По мере того, как содержание кислорода в окружающем воздухе уменьшается, а содержание двуокиси углерода увеличивается, у находящихся в этих условиях людей автоматически возникает эмоциональный дискомфорт. В этом случае формируется мотивация по устранению экстремальной ситуации или избегания ее. На основе дыхательной мотивации формируются специальные действия, результат которых обеспечивает адекватное поступление кислорода и выделение двуокиси углерода из организма.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: