Свойства гидростатического давления

Гидростатическое давление обладает двумя основными свойствами.

1-ое свойство. Силы гидростатического давления в покоящейся жидкости всегда направлены внутрь по нормали к площадке действия, т.е. являются сжимающими.

Это свойство доказывается от противного. Если предположить, что силы направлены по нормали наружу, то это равносильно появлению в жидкости растягивающих напряжений, которых она воспринимать не может (это вытекает из свойств жидкости).

2-ое свойство. Величина гидростатического давления в любой точке жидкости по всем на­правлениям одинаково, т.е. не зависит от ориентации в пространстве площадки, на которую оно действует

,

где - гидростатические давления по направлению координатных осей;

- то же по произвольному направлению .

Для доказательства этого свойства выделим в неподвижной жидкости элементарный объем в форме тетраэдра с ребрами, параллельными координатным осям и соответственно равными , и (рис. 2.3).

Рис. 2.3. Схема для доказательства свойства

о независимости гидростатического давления от направления

Введем обозначения: -гидростатическое давление, действующее на грань, нормальную к оси ;

- давление на грань, нормальную к оси ;

- давление на грань, нормальную к оси ;

- давление, действующее на наклонную грань;

- площадь этой грани;

- плотность жидкости.

Запишем условия равновесия для тетраэдра (как для твердого тела) в виде трех уравнений проекций сил и трех уравнений моментов:

, , ;

, , .

При уменьшении в пределе объема тетраэдра до нуля система действующих сил преобразуется в систему сил проходящих через одну точку, и, таким образом, уравнения моментов теряют смысл.

Таким образом, внутри выделенного объема на жидкость действует единичная массовая сила, проекции ускорений которой равны , . В гидравлике принято массовые силы относить к единице массы, а так как , то проекция единичной массовой силы численно будет равна ускорению.

; ; ,

где , , - проекции единичной массовой силы на оси координат;

- масса жидкости;

- ускорение.

Составим уравнение равновесия выделенного объема жидкости в направлении оси , учитывая при этом, что все силы направлены по нормалям к соответствующим площадкам внутрь объема жидкости:

, (2.4)

где - проекция силы от гидростатического давления ;

- проекция силы от давления ;

- проекция массовой силы, действующей на тетраэдр.

Разделив уравнение (2.2) на площадь , которая равна пло­щади проекции наклонной грани на плоскость , т. е. , получим

.

При стремлении размеров тетраэдра к нулю последний член уравнения, содержащий множитель , также стремится к нулю , а давления и остаются величинами конечными.

Следовательно, в пределе получим

или .

Аналогично составляя уравнения равновесия вдоль осей и , находим

, ,

или .

Так как размеры тетраэдра , и и наклон площадки взяты произвольно, то, следовательно, в пределе при стягивании тетраэдра в точку давление в этой точке по всем направлениям будет одинаково. Что и требовалось доказать.

Рассмотренное свойство давления в неподвижной жидкости имеет место также при движении невязкой (идеальной) жидкости. При движении же реальной жидкости возникают касательные напряжения, вследствие чего давление в реальной жидкости указанным свойством, строго говоря, не обладает.

В общем случае давление в точке зависит от координат рассматриваемой точки, а при неустановившемся движении жидкости может изменяться в каждой данной точке с течением времени: .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: