Система маслоснабжения паровой турбины


ЭЛЕКТРОМЕХАНИЧЕСКАЯ СИСТЕМА РЕГУЛИРОВАНИЯ И ЗАЩИТЫ ПАРОВОЙ ТУРБИНЫ
Электромеханическая система регулирования и защиты паровой турбины может быть использована при производстве, реконструкции и эксплуатации паровых турбин на электростанциях, которая содержит блок регулирования и блок защиты. На линии подвода свежего пара по трубопроводу к паровой турбине установлены стопорный и регулирующий клапаны, которые управляются соответственно автозатвором, сервомотором и штоками. На валах зубчатых шестерен редукторов жестко установлены роторы электромагнитных муфт с управляющими обмотками. В зубчиковое подвижное сцепление с роторами входят подвижные в осевом направлении якори, которые через шлицевые подвижные соединения установлены на валах электрических исполнительных механизмов. При этом управляющие обмотки роторов автозатвора и сервомотора соединены с выходом электронного автомата безопасности, управляющий вход и управляющие входы обмотки электромагнитной муфты сервомотора регулирующего клапана линиями связи соединены с выходами. Входы электронного автомата безопасности и электрического регулятора частоты и мощности линиями связи соединены с датчиками частоты и мощности, установленными в схеме электрических соединений и защит генератора. Управляющие входы электрического исполнительного механизма автозатвора стопорного клапана линиями связи соединены с выходом устройства автоматического расхаживания и взведения стопорного клапана. Технический результат изобретения - повышение надежности, экономичности, быстродействия и точности CAP, упрощение конструкции и сокращение габаритов. 1 ил.
Изобретение относится к теплоэнергетике и может быть использовано при производстве, реконструкции и эксплуатации паровых турбин на электростанциях.
Масло в маслосистему подается либо от отдельно стоящих насосов, либо от главного масляного насоса, установленного на роторе турбины. В маслосистему, кроме насосного оборудования, входит развитая трубопроводная сеть, состоящая из высоконапорных и сливных трубопроводов с фланцевыми и сварными соединениями и арматурой; маслобак; маслоохладители; фильтры; инжекторы; система очистки масла; эксгаустеры и прочее вспомогательное оборудование. Сигналы от ЭИМ управления турбиной через ЭГП - в нормальных режимах работы турбины, или от ЭАБ через ЭГП или электромагнитный выключатель - в аварийных режимах работы турбины, - передаются по импульсным трубопроводам к отсечным золотникам: в первом случае - к золотникам сервомоторов регулирующих клапанов, во втором - к золотникам автозатворов стопорных клапанов. Отсечные золотники осуществляют открытие сервомоторов и автозатворов путем подачи напорного масла из системы маслоснабжения под их поршни, одновременно сжимая пружины. Закрытие сервомоторов и автозатворов осуществляется пружинами, воздействующими на их поршни, путем слива масла из-под них через отсечной золотник, причем быстродействие сервомоторов и автозатворов определяется размерами отсечного золотника и его сливных окон, его рабочим ходом, размерами присоединенных к золотнику напорных, импульсных и сливных трубопроводов.
Недостатками известной электрогидравлической системы регулирования и парораспределения являются следующие.
1. Недостаточная надежность работы и высокие эксплуатационные издержки при применении в электрогидравлической системе регулирования и парораспределения масляных сервомоторов и автозатворов для перемещения регулирующих и стопорных клапанов на подводе острого пара в турбину, пара из промперегрева или котла-утилизатора парогазовой установки, на нитках производственных, регенеративных, технологических отборов пара от турбины и т.д. Эти клапаны могут располагаться в различных точках турбоустановки на значительном расстоянии от органов управления турбиной и источников маслоснабжения их гидроприводов, что требует применения сложной маслосистемы с разветвленной сетью трубопроводов высокого давления и соответственно усложняет и удорожает эксплуатацию турбоустановки.
2. Существенно пониженная пожаробезопасность турбоустановки и электростанции в целом вследствие установки масляных сервомоторов, автозатворов и обслуживающих их напорных, импульсных и сливных трубопроводов с большим количеством фланцевых и сварных соединений и арматуры, смонтированных в непосредственной близости к горячим частям турбины. Эти обстоятельства могут стать причиной возгорания и серьезной аварии на станции из-за возможных утечек масла из неплотностей фланцевых соединений, трещин и свищей в сварных стыках трубопроводов и в местах их присоединения к арматуре из-за утекшего масла, накопленного в изоляции и обмуровке.
3. Недостаточное быстродействие гидравлических сервомоторов и автозатворов на закрытие регулирующих и стопорных клапанов, которое ограничивается конструктивными размерами отсечных золотников: их диаметром, рабочим ходом, размерами регулируемых ими сливных сечений, диаметрами обслуживающих их напорных, импульсных и сливных трубопроводов, снижает величину расхода рабочего масла, сливаемого из под поршней сервомоторов и автозатворов клапанов.
Недостатками известного электрического привода клапанов при применении его в системах регулирования и защиты мощных паровых турбин высокого давления, снабженных регулирующими и стопорными клапанами, установленными на подводе свежего пара к турбине и т.д., на которые действуют значительные паровые усилия, являются следующие.

1. При индивидуальном управлении регулирующими и стопорными клапанами, нагруженными значительными паровыми усилиями, с помощью известных электрических приводов необходимо применение подъемных электромагнитов, рассчитанных на рабочие осевые усилия, соизмеримые с паровыми усилиями, действующими на клапан, что предопределяет значительную потребляемую мощность и габариты подъемного электромагнита. Так, например, электромагнит грузоподъемный типа МГ-70А грузоподъемностью 7 тонн потребляет 3,4 кВт мощности, имеет габариты 740×985 мм и допускает повторно-кратковременный режим работы с продолжительностью включений ПВ до 50%. Поскольку при нормальной работе турбины подъемные электромагниты должны находиться во включенном состоянии постоянно, т.е. ПВ=100%, то при их высокой мощности возрастает энергопотребление от питающих их аккумуляторных батарей, имеющих ограниченную энергоемкость, особенно если учесть, что от аккумуляторных батарей запитаны практически все системы защиты и оперативные системы управления электростанций, то это существенно снижает надежность и экономичность турбоустановки и электростанции в целом.
2. Высокая потребляемая мощность применяемых подъемных электромагнитов и, как следствие, высокая индуктивность их обмоток и массы подвижных частей якоря существенно снижают быстродействие известных электрических приводов клапанов турбины.
3. Значительные габариты подъемного электромагнита и применение рычажных передач в кинематической схеме привода от якоря электромагнита и от ЭИМ на шток клапана с пружиной существенно усложняет конструкцию и габариты индивидуальных приводов регулирующих и стопорных клапанов, что затрудняет их использование в электромеханических системах регулирования и защиты мощных паровых турбин высокого давления.
Техническая задача, на решение которой направлено предлагаемое изобретение, включает повышение надежности, экономичности и быстродействия системы регулирования и защиты паровой турбины, упрощение конструкции и уменьшение габаритов электрической части индивидуальных приводов регулирующих и стопорных клапанов, повышение степени автоматизации, удобства эксплуатации и повышение степени пожаробезопасности турбоустановки и электростанции в целом и обуславливается следующим.

Для решения поставленных задач, согласно изобретению электромеханическая система регулирования и защиты паровой турбины, содержащая регулирующие и стопорные клапаны, сервомоторы и автозатворы для их привода, в корпусах которых размещены поршни и установленные между поршнями и корпусами пружины и штоки; электрическую систему регулирования частоты и мощности, электронный автомат безопасности, электрические исполнительные механизмы, электромагнитные муфты с управляющими обмотками, датчики частоты и мощности, при этом на корпусах сервомоторов и автозатворов установлены редукторы, в которых ведомые звенья через компенсаторы относительного теплового расширения штоков соединены с поршнями и пружинами, жестко скрепленными с регулирующими и стопорными клапанами, а на валу ведущего звена редуктора жестко установлен ротор электромагнитной муфты с управляющей обмоткой, в зубчиковое подвижное сцепление с которым входит якорь, установленный на валу электрического исполнительного механизма через шлицевое подвижное соединение, причем электрические входы управляющих обмоток роторов электромагнитных муфт сервомоторов и автозатворов соединены линиями связи с выходом электронного автомата безопасности, управляющие входы электрических исполнительных механизмов и входы управляющих обмоток роторов электромагнитных муфт сервомоторов регулирующих клапанов линиями связи соединены с выходами электрического регулятора частоты и мощности, а управляющие входы электрических исполнительных механизмов автозатворов стопорных клапанов линиями связи соединены с выходами электрического устройства автоматического расхаживания и взведения стопорного клапана.
Повышение точности регулирования, степени автоматизации и пожаробезопасности, удобства эксплуатации турбоустановки достигается тем, что на валу ведущего звена редуктора жестко установлен ротор электромагнитной муфты с управляющей обмоткой, в зубчиковое подвижное сцепление с которым входит якорь, через шлицевое подвижное соединение установленный на валу электрического исполнительного механизма, причем электрические входы управляющих обмоток электромагнитных муфт сервомоторов и автозатворов линиями связи соединены с выходом электронного автомата безопасности, а управляющие входы электрических исполнительных механизмов и входы управляющих обмоток роторов электромагнитных муфт сервомоторов регулирующих клапанов линиями связи соединены с выходами электрического регулятора частоты и мощности паровой турбины, а управляющие входы электрических исполнительных механизмов автозатворов стопорных клапанов линиями связи соединены с выходами электрического устройства автоматического расхаживания и взведения. Повышение степени автоматизации, пожаробезопасности и удобства эксплуатации турбоустановки достигается за счет использования индивидуальных электрических приводов в системе парораспределения турбины, исключения из работы в системе автоматического регулирования турбины (CAP) масла и ЭГП, повышения точности регулирования вырабатываемой турбиной электрической и тепловой мощности, а также повышения качества вырабатываемой электроэнергии.Электромеханическая система регулирования и защиты паровой турбины, содержащая регулирующие и стопорные клапаны, сервомоторы и автозатворы для их привода, в корпусах которых размещены поршни и установленные между поршнями и корпусами пружины и штоки; электрическую систему регулирования частоты и мощности, электронный автомат безопасности, электрические исполнительные механизмы, электромагнитные муфты с управляющими обмотками, датчики частоты и мощности, при этом на корпусах сервомоторов и автозатворов установлены редукторы, зубчатые рейки которых через компенсаторы относительного теплового расширения штоков соединены с поршнями и пружинами, жестко скрепленными с регулирующими и стопорными клапанами, а на валу зубчатой шестерни редуктора жестко установлен ротор электромагнитной муфты с управляющей обмоткой, в зубчиковое подвижное сцепление с которым входит якорь, установленный на валу электрического исполнительного механизма через шлицевое подвижное соединение, причем электрические входы управляющих обмоток роторов электромагнитных муфт сервомоторов и автозатворов соединены линиями связи с выходом электронного автомата безопасности, управляющие входы электрических исполнительных механизмов и входы управляющих обмоток роторов электромагнитных муфт сервомоторов регулирующих клапанов линиями связи соединены с выходами электрического регулятора частоты и мощности, а управляющие входы электрических исполнительных механизмов автозатворов стопорных клапанов линиями связи соединены с выходами электрического устройства автоматического расхаживания и взведения стопорного клапана.

Обеспечение непрерывного функционирования системы регулирования и защиты паровой турбины является основой надежной работы всего агрегата. Примером работы подобной системы является электрогидравлическая система регулирования и защиты паровой турбины, предназначенная для поддержания основных регулируемых параметров турбины в режимах электрической и тепловой нагрузки. Подобная система уже была реализована на некоторых паровых турбинах.

В соответствии с технологической программой ЭЧСРиЗ выполняет следующие функции:

- регулирование частоты вращения турбины (ПИ- при работе на холостом ходу, П- при работе в сети под нагрузкой со степенью неравномерности 4,5±0,5 %);

- регулирование активной электрической мощности с частотной коррекцией (при работе в сети);

- регулирование давления производственных отборов пара;

- регулирование давления отопительных отборов пара;

- регулирование температуры или нагрева сетевой воды с подчиненным контуром регулирования давления отопительного отбора пара;

- обеспечение безопасной эксплуатации турбины и защиту от неправильных действий оперативного персонала (соблюдает ограничения по минимальному давлению свежего пара, максимальному давлению в регулирующей ступени, максимальному давлению в камерах производственных и отопительных отборов, ухудшению вакуума в конденсаторе и т.д.);

- защита турбины от разгона - трехканальный электрический автомат безопасности (ЭАБ) обеспечивает останов турбины при достижении ротором предельной частоты вращения (с учетом величины ускорения ротора);

- обеспечение приема и отработки сигналов электрических защит турбоустановки;

- обеспечение приема и отработки сигналов противоаварийной автоматики энергосистемы;

- контроль основных параметров ЭГСРиЗ и изменения параметров настройки;

- контроль датчиков, линий связи с объектом и цепей питания;

- тестирование каналов ЭАБ, совмещенное с расхаживанием золотников защит;

- безударное включение и выключение регуляторов во всех режимах эксплуатации;

- безударное изменение алгоритмов регулирования при обнаружении отказов;

- обеспечение проведения необходимых испытаний (разгон, повышение давления в регулируемых отборах и др.) и определения характеристик;

- оповещение, регистрация и архивирование сообщений об изменении режимов и отклонениях в работе турбины (в том числе аварийных);

- обеспечение связи с системами верхнего уровня (АСУ ТП).

ЭЧСРиЗ выполняется на комплектующих фирмы “Omron”. В качестве процессорного устройства применяется дублированный контроллер CS1D-CPU65H. Для управления гидравлическими сервомоторами используются электрические сервоприводы серии Sigma II. Для измерения частоты вращения и выработки сигнала защиты по превышению частоты вращения используется тахометр CCD FMD-RS422, собственной разработки НПФ “Ракурс”. Возможна поставка системы, построенной на ПЛК Siemens.

Конструктивно ЭЧСРиЗ выполнена в виде металлических шкафов со степенью защиты IP44 и габаритами 2000х800х600 мм и 2000х800х800 мм.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: