Кислородное топливо

Основной принцип состоит в том, что из воздуха выделяется кислород, который смешивается с угольной пылью и сжигается.

При сжигании угля в чистом кислороде, не происходит образование оксидов азота.

После нескольких ступеней очистки в д.г. остается только СО2.

Pre combustion

Отличительной особенностью данного метода является то, что на 1-й стадии уголь подвергся газификации. В результате чего получаетсся синтез – газ и твердый остаток, затем синтез.-газ проходит ряд ступеней очистки и подвергается химической реакции, в ходе которой содержащийся в синтез-газе СО преобразуется в водород и в углекислый газ.

СО2 удаляется из синтез-газа с помощью жидкого абсорбера, оставшийся водород сжигается в камере сгорания газовой турбины.

В отдельной установке СО2 восстанавливается и затем подвергается сжатию.

Метод Post-Combustion

Уголь сжигается в обычном котле в смеси с воздухом, затем происходит удаление золы и SОх, после чего при помощи жидкого абсорбера удаляется SО2. СО2 направляется на компрессор, де дожимается до жидкого состояния.

Минус – Оставшиеся продукты сгорания выбрасываются в атмосферу вместе с NОх.

40. За счёт чего в конденсаторе турбин увеличивается КПД ТЭС.

Коэффициент полезного действия турбины можно увеличить, повысив температуру и давление пара, поступающего в турбину, или снизив температуру и давление насыщенного пара на выходе из турбины. Последнее достигается путем конденсации выходящего из турбины пара, которая происходит в установленном для этой цели конденсаторе при подаче в него охлаждающей воды.

41. Какие способы прохождения провалов нагрузки на ТЭС является экономичными.

При прохождении провалов нагрузки в зимнее время на ТЭЦ целесообразно применять такие способы как уменьшение тепловой нагрузки с увеличением выработки тепла на ПВК и РОУ, установка дополнительного подогревателя.

Отключение ПВД

Отключение ПВД с дополнительным подводом пара в отключенные отборы

Ограничение тепловой нагрузки с использованием аккумулирующих свойств

42. Основные способы повышения эффективности ГТУ.

Известны следующие способы повышения эффективности ГТУ: [2]

- форсирование параметров цикла;

- усложнение термодинамического цикла;

- впрыск воды, водяного пара в проточную часть ГТУ.

Основными способами форсирования параметров цикла является повышение значений степени сжатия компрессора и степени подогрева. Рост температуры газа при фиксированном значении сопровождается небольшим увеличением мощности и КПД, значительное повышение температуры газа перед турбиной должно сопровождаться увеличением степени сжатия. Однако реализация данного метода лимитируется свойствами материала рабочих лопаток турбины, которому необходимо выдержать большой температурный напор в течение большого ресурса.

Усложнение термодинамического цикла осуществимо с уменьшением температуры газов, покидающих ГТУ (при существовании ограничивающей температуре в ОКС, лимитируемой прочностью материалов двигателя). Один из способов – повышение степени сжатия в компрессоре и степени расширения в турбине, с введением изменений конструкции базового ГТД, что требует дополнительных материальных затрат.

43. Как распределяется нагрузка между работающими котлами.

На основе характеристик для отдельных котлов строятся одно­именные характеристики для котельной применительно к одно­временно находящимся в работе котлам в данный период време­ни и оптимальному распределению тепловой нагрузки котельной между ними. Распределение нагрузки между совместно работа­ющими агрегатами будет наиболее выгодным, когда выполнение данного общего графика нагрузки требует наименьшего количе­ства первичной энергии. Тепловые нагрузки котлов, соответствующие этим условиям, будут совпадать, если в рассматриваемый период времени все работающие котлы данной котельной используют одинаковое топливо. Для достижения этих критериев необходимо, чтобы в каждый момент времени обеспе­чивалось равенство относительных приростов расхода топлива или относительных приростов стоимости топлива: гк1 = гк2 =... = гкi.

Для построения характеристики относительных приростов котельной суммирование нагрузки отдельных котлов следует произ­водить при одинаковых значениях относительных приростов расхода топлива или одинаковых значениях относительных приростов стоимости топлива. Характеристика относительных приростов расхода топлива котельной, состоящей из двух разнотипных котлов, имеет излом (рис. 13.10), который происходит в характерных точ­ках, соответствующих минимальным и максимальным нагрузкам отдельных котлов.

44. Чем ограничено увеличение параметров пара на ТЭС.

Материалами

45. Основные потери теплоты на пылеугольных ТЭС.

Потери с дымовыми газами

Хим. недожог

Мех. Недожог

От наружного охлаждения

С теплом шлака

46. Основные критерии повышения КПД за счёт промежуточного перегрева пара.

Значительная экономия топлива может быть достигнута путем применения промежуточного перегрева пара

47. Какие методы сжигания топлива наиболее эффективно снижают выход NOX.

Снижение выбросов оксидов азота

Энергетические котлы имеют, как правило, несколько ярусов горелок или, во всяком случае, несколько горелок в одном ярусе. Это позволяет без дополнительных затрат внедрить метод нестехиометрического сжигания.

Нестехиометрическое сжигание — это нетрадиционный способ сжигания топлив с организацией в топочной камере раздельных восстановительной (α < 1) и окислительной (α > 1,2…1,25) зон горения при сохранении традиционных избытков воздуха на выходе из топки.

48. Устройство газотурбинной установки (ГТУ).

Традиционная современная газотурбинная установка (ГТУ) — это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Необходимо подчеркнуть одно важное отличие ГТУ от ПТУ. В состав ПТУ не входит котел, точнее котел рассматривается как отдельный источник тепла; при таком рассмотрении котел — это «черный ящик»: в него входит питательная вода с температурой tп.в, а выходит пар с параметрами р0, t0. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ камера сгорания — это ее неотъемлемый элемент. В этом смысле ГТУ — самодостаточна.

Принципиальная схема такой ГТУ показана на рис. 7.1. Воздух из атмосферы поступает на вход воздушного компрессора, который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором рb к давлению перед ним рa называется степенью сжатия воздушного компрессора и обычно обозначается как к (к = pb/pa). Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две (как на рис. 7.1) или более камер сгорания. При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подается топливо (газ или жидкое топливо). При сжигании топлива образуются продукты сгорания топлива высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их обычно называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рабочие газы с давлением рс (рс < рb из-за гидравлического сопротивления камеры сгорания) подаются в проточную часть газовой турбины, принцип действия которой ничем не отличается от принципа действия паровой турбины (отличие состоит только в том, что газовая турбина работает на продуктах сгорания топлива, а не на паре). В газовой турбине рабочие газы расширяются практически до атмосферного давления pd, поступают в выходной диффузор 14, и из него — либо сразу в дымовую трубу, либо предварительно в какой-либо теплообменник, использующий теплоту уходящих газов ГТУ.

Вследствие расширения газов в газовой турбине, последняя вырабатывает мощность. Весьма значительная ее часть (примерно половина) тратится на привод компрессора, а оставшаяся часть — на привод электрогенератора. Это и есть полезная мощность ГТУ, которая указывается при ее маркировке.

49. Преимущества и недостатки ГТУ.

Главным преимуществом ГТУ является ее компактность. Действительно, прежде всего, в ГТУ отсутствует паровой котел, — сооружение, достигающее большой высоты и требующее для установки отдельного помещения (см. рис. 2.6). Связано это обстоятельство, прежде всего с высоким давлением в камере сгорания (1,2—2 МПа); в котле горение происходит при атмосферном давлении и соответственно объем образующихся горячих газов оказывается в 12—20 раз больше. Далее, в ГТУ процесс расширения газов происходит в газовой турбине, состоящей всего из 3—5 ступеней, в то время как паровая турбина, имеющая такую же мощность, состоит из 3—4 цилиндров, заключающих 25—30 ступеней. Даже с учетом и камеры сгорания, и воздушного компрессора ГТУ мощностью 150 МВт имеет длину 8—12 м, а длина паровой турбины такой же мощности при трехцилиндровом исполнении в 1,5 раза больше. При этом для паровой турбины кроме котла необходимо предусмотреть установку конденсатора с циркуляционными и конденсатными насосами, систему регенерации из 7—9 подогревателей, питательные турбонасосы (от одного до трех), деаэратор. Как следствие, ГТУ может быть установлена на бетонное основание на нулевой отметке машинного зала, а ПТУ требует рамного фундамента высотой 9—16 м с размещением паровой турбины на верхней фундаментной плите и вспомогательного оборудования — в конденсационном помещении.

Компактность ГТУ позволяет осуществить ее сборку на турбинном заводе, доставить в машинный зал железнодорожным или автодорожным транспортом для установки на простом фундаменте. Так, в частности, транспортируется ГТУ с встроенными камерами сгорания. При транспортировке ГТУ с выносными камерами последние транспортируются отдельно, но легко и быстро присоединяются с помощью фланцев к модулю компрессор — газовая турбина. Паровая турбина поставляется многочисленными узлами и деталями, монтаж как ее самой, так и многочисленного вспомогательного оборудования и связей между ними занимает в несколько раз больше времени, чем ГТУ.

ГТУ не требует охлаждающей воды. Как следствие, в ГТУ отсутствует конденсатор и система технического водоснабжения с насосной установкой и градирней (при оборотном водоснабжении). В результате все это приводит к тому, что стоимость 1 кВт установленной мощности газотурбинной электростанции значительно меньше. При этом стоимость собственно ГТУ (компрессор + камера сгорания + газовая турбина) из-за ее сложности оказывается в 3—4 раза больше, чем стоимость паровой турбины такой же мощности.

Важным преимуществом ГТУ является ее высокая маневренность, определяемая малым уровнем давления (по сравнению с давлением в паровой турбине) и, следовательно, легким прогревом и охлаждением без возникновения опасных температурных напряжений и деформаций.

Однако ГТУ имеют и существенные недостатки, из которых, прежде всего, необходимо отметить меньшую экономичность, чем у паросиловой установки. Средний КПД достаточно хороших ГТУ составляет 37—38 %, а паротурбинных энергоблоков — 42—43 %. Потолком для мощных энергетических ГТУ, как он видится в настоящее время, является КПД на уровне 41—42 %, (а может быть и выше с учетом больших резервов повышения начальной температуры). Меньшая экономичность ГТУ связана с высокой температурой уходящих газов.

Другим недостатком ГТУ является невозможность использования в них низкосортных топлив, по крайней мере, в настоящее время. Она может хорошо работать только на газе или на хорошем жидком топливе, например дизельном. Паросиловые энергоблоки могут работать на любом топливе, включая самое некачественное.

Низкая начальная стоимость ТЭС с ГТУ и одновременно сравнитель­но низкая экономичность и высокие стоимость используемого топлива и маневренность определяют основную область индивидуального использования ГТУ: в энергосистемах их следует применять как пиковые или резервные источники мощности, работающие несколько часов в сутки.

Вместе с тем ситуация кардинально изменяется при использовании теплоты уходящих газов ГТУ в теплофикационных установках или в комбинированном (парогазовом) цикле.

50. Классификация ПГУ.

По назначению ПГУ подразделяют на конденсационные и теплофикационные. Первые из них вырабатывают только электроэнергию, вторые — служат и для нагрева сетевой воды в подогревателях, подключаемых к паровой турбине.

По количеству рабочих тел, используемых в ПГУ, их делят на бинарные и монарные. В бинарных установках рабочие тела газотурбинно­го цикла (воздух и продукты горения топлива) и паротурбинной установки (вода и водяной пар) разделены. В монарных установках рабочим телом турбины является смесь продуктов сгорания и водяного пара.

Схема монарной ПГУ показана на рис. 8.4. Выходные газы ГТУ направляются в котел-утилизатор, в который подается вода питательным насосом 5. Получаемый на выходе пар поступает в камеру сгорания 2, смешивается с продуктами сгорания и образующаяся однородная смесь направляется в газовую (правильнее сказать — в парогазовую турбину 3. Смысл этого понятен: часть воздуха, идущего из воздушного компрессора и служащая для уменьшения температуры рабочих газов до допустимой по условиям прочности деталей газовой турбины, замещается паром, на повышение давления которого питательным насосом в состоянии воды затрачивается меньше энергии, чем на повышение давления воздуха в компрессоре. Вместе с тем, поскольку газопаровая смесь покидает котел-утилизатор в виде пара, то тепло конденсации водяного пара, полученное им в котле и составляющее значительную величину, уходит в дымовую трубу.

Техническая трудность организации конденсации пара из парогазовой смеси и связанная с этим необходимость постоянной работы мощной водоподготовительной установки является главным недостатком ПГУ монарного типа.

За рубежом описанная монарная установка получила название STIG (от Steam Iniected Gas Turbine). Их строит в основном фирма General Elec­tric в комбинации с ГТУ сравнительно малой мощности. В табл. 8.1 приведены данные фирмы General Electric, иллюстрирующие увеличение мощности и КПД двигателей при использовании впрыска пара.

Утилизационные ПГУ. В этих установках тепло уходящих газов ГТУ утилизируется в котлах-утилизаторах с получением пара высоких параметров, используемого в паротурбинном цикле. Главными преимуществами утилизационных ПГУ по сравнению с ПТУ являются высокая экономичность (в ближайшие годы их КПД превысит 60 %), существенно меньшие капиталовложения, меньшая потребность в охлаждающей воде, малые вредные выбросы, высокая маневренность. Как показано выше, утилизационные ПГУ требуют высокоэкономичных высокотемпературных газовых турбин с высокой температурой уходящих газов для генерирования пара высоких параметров для паротурбинной установки (ПТУ). Современные ГТУ, отвечающие этим требованиям, пока могут работать либо на природном газе, либо на легких сортах жидкого топлива.

ПГУ со сбросом выходных газов ГТУ в энергетический котел. Часто такие ПГУ называют кратко «сбросными», или ПГУ с низконапорным парогенератором (рис. 8.5). В них тепло уходящих газов ГТУ, содержащих достаточное количество кислорода, направляется в энергетический котел, замещая в нем воздух, подаваемый дутьевыми вентиляторами котла из атмосферы. При этом отпадает необходимость в воздухоподогревателе котла, так как уходящие газы ГТУ имеют высокую температуру. Главным преимуществом сбросной схемы является возможность использования в паро­турбинном цикле недорогих энергетических твердых топлив.

ПГУ с «вытеснением» регенерации. Идея такой ПГУ состоит в том, что регенеративные подогреватели отключаются от паровой турбины, а для подогрева питательной воды энергетического котла используется тепло уходящих газов ГТУ (рис. 8.6). Сэкономленный пар отборов служит для выработки дополнительной мощности в паровой турбине. При этом теплота конденсации сэкономленного пара теряется в конденсаторе, а не возвращается питательной воде. Поэтому выигрыш в экономичности возникает тогда, когда эта потеря будет меньше, чем экономия топлива за счет уменьшения потери теплоты с уходящими газами ГТУ. ПГУ с вытеснением регенерации дает наименьшую экономию топлива (около 4 %), однако она позволяет надстроить паротурбинный энергоблок с минимальными переделками.

Схема ПГУ с высоконапорным парогенератором (котлом) В такой ПГУ высоконапорный парогенератор (ВПГ) играет одновременно роль и энергетического котла ПТУ и камеры сгорания ГТУ. Для этого в нем поддерживается высокое давление, создаваемое компрессором ГТУ. Для повышения экономичности перед ВПГ устанавливается газовый подогреватель конденсата ГПК, уменьшающий температуру уходящих газов ГТУ.

Экономия топлива в такой установке также зависит от соотношения мощностей ГТУ и ПТУ и находится на таком же уровне, как и у сбросных ПГУ. В России на Невинномысской ГРЭС построена одна ПГУ с ВПГ мощностью 200 МВт (см. табл. 8.2), обеспечивающая экономичность на уровне 36,9 %. Сейчас она маркируется как ПГУ-170 с паровой турбиной К-145-130 и ГТУ ГТ-25-710. В 1998 г. она имела коэффициент использования установленной мощности 65 % при удельном расходе условного топлива 352,4 г/(кВт·ч), т.е. при КПД 34,7 %.

Серьезную проблему для ПГУ с ВПГ представляет износ проточной части газовой турбины под действием продуктов коррозии внутренней части парогенератора.

51. Принципиальная схема простейшей парогазовой установки утилизационного типа.

Парогазовыми называются энергетические установки, в которых теплота уходящих газов ГТУ прямо или косвенно используется для выработки электроэнергии в паротурбинном цикле.

На рис. 8.1 показана принципиальная схема простейшей парогазовой установки так называемого утилизационного типа. Уходящие газы ГТУ поступают в котел-утилизатор — теплообменник противоточного типа, в котором за счет тепла горячих газов генерируется пар высоких параметров, направляемый в паровую турбину.

Котел-утилизатор представляет собой шахту прямоугольного сечения, в которой размещены поверхности нагрева, образованные сребренными трубами, внутрь которых подается рабочее тело паротурбинной установки (вода или пар). В простейшем случае поверхности нагрева котла-утилизатора состоят из трех элементов: экономайзера 3, испарителя 2 и пароперегревателя 1. Центральным элементом является испаритель, состоящий из барабана 4 (длинного цилиндра, заполняемого наполовину водой), нескольких опускных труб 7 и достаточно плотно установленных вертикальных труб собственно испарителя 8. Испаритель работает на принципе естественной конвекции. Испарительные трубы находятся в зоне более высоких температур, чем опускные. Поэтому в них вода нагревается, частично испаряется и поэтому становится легче и поднимается вверх в барабан. Освобождающееся место заполняется более холодной водой по опускным трубам из барабана. Насыщенный пар собирается в верхней части барабана и направляется в трубы пароперегревателя 1. Расход пара из барабана 4 компенсируется подводом воды из экономайзера 3. При этом поступающая вода, прежде чем испариться полностью, многократно пройдет через испарительные трубы. Поэтому описанный котел-утилизатор называется котлом с естественной циркуляцией.

В экономайзере происходит нагрев поступающей питательной воды практически до температуры кипения (на 10—20 °С меньше, чем температура насыщенного пара в барабане, полностью определяемая давлением в нем). Из барабана сухой насыщенный пар поступает в пароперегреватель, где перегревается сверх температуры насыщения. Температура получаемого перегретого пара t 0 всегда, конечно, меньше, чем температура газов qГ, поступающих из газовой турбины (обычно на 25—30 °С).

Под схемой котла-утилизатора на рис. 8.1 показано изменение температур газов и рабочего тела при их движении навстречу друг другу. Температура газов плавно уменьшается от значения qГ на входе до значения qух температуры уходящих газов. Движущаяся навстречу питательная вода повышает в экономайзере свою температуру до температуры кипения (точка а). С этой температурой (на грани кипения) вода поступает в испаритель. В нем происходит испарение воды. При этом ее температура не изменяется (процесс ab). В точке b рабочее тело находится в виде су­хого насыщенного пара. Далее в пароперегревателе происходит его перегрев до значения t 0.

Образующийся на выходе из пароперегревателя пар направляется в паровую турбину, где, расширяясь, совершает работу. Из турбины отработанный пар поступает в конденсатор, конденсируется и с помощью питательного насоса 6, повышающего давление питательной воды, направляется снова в котел-утилизатор.

Таким образом, принципиальное отличие паросиловой установки (ПСУ) ПГУ от обычной ПСУ ТЭС состоит только в том, что топливо в котле-утилизаторе не сжигается, а необходимая для работы ПСУ ПГУ теплота берется от уходящих газов ГТУ. Однако сразу же необходимо отметить ряд важных технических отличий ПСУ ПГУ от ПСУ ТЭС.

1. Температура уходящих газов ГТУ qГ практически однозначно определяется температурой газов перед газовой турбиной [см. соотношение (7.2)] и совершенством системы охлаждения газовой турбины. В большинстве современных ГТУ, как видно из табл. 7.2, температура уходящих газов составляет 530—580 °С (хотя имеются отдельные ГТУ с температурой вплоть до 640 °С). По условиям надежности работы трубной системы экономайзера при работе на природном газе температура питательной воды t п.в на входе в котел-утилизатор не должна быть меньше 60 °С. Температура газов qух, покидающих котел-утилизатор, всегда выше, чем температура t п.в. Реально она находится на уровне qух» 100 °С и, следовательно, КПД котла-утилизатора составит

где для оценки принято, что температура газов на входе в котел-утилизатор равна 555 °С, а температура наружного воздуха 15 °С. При работе на газе обычный энергетический котел ТЭС (см. лекцию 2) имеет КПД на уровне 94 %. Таким образом, котел-утилизатор в ПГУ имеет КПД существенно более низкий, чем КПД котла ТЭС.

2. Далее, КПД паротурбинной установки рассмотренной ПГУ существенно ниже, чем КПД ПТУ обычной ТЭС. Это связано не только с тем, что параметры пара, генерируемого котлом-утилизатором, ниже, но и с тем, что ПТУ ПГУ не имеет системы регенерации. А иметь ее она в принципе не может, так как повышение температуры t п.в приведет к еще большему снижению КПД котла-утилизатора.

Тем не менее, при всем этом КПД ПГУ оказывается весьма высоким. Для того чтобы убедиться в этом, рассмотрим ПГУ простой схемы (рис. 8.2), причем при рассмотрении будем принимать далеко не самые лучшие экономические показатели отдельных элементов оборудования.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: