Кризис и смена физической картины мира

Великие открытия. Конец XIX в. в истории физики отмечен рядом принципиальных открытий, которые привели к научной революции на рубеже XIX—XX вв.: открытие рентгеновских лучей, открытие электрона и установление зависимости его массы от скорости, открытие радиоактивности, фотоэффекта и его законов и др.

В 1895 г. В. Рентген обнаружил лучи, получившие впоследствии название рентгеновских. Это открытие заинтересовало физиков и вызвало широкую дискуссию о природе этих лучей. В течение короткого времени были выяснены необычные свойства этих лучей (способность проходить через светонепроницаемые тела, ионизировать газы и т.д.), но их природа оставалась неясной. Открытие рентгеновских лучей способствовало исследованиям электропроводности газов и изучению катодных лучей. Заинтересовавшись открытием Рентгена, английский физик Дж. Дж. Томсон (совместно с Э. Резерфордом) установил, что под действием облучения рентгеновскими лучами резко возрастает электрическая проводимость газа и это свойство сохраняется некоторое время после прекращения облучения. Анализ подвел к выводу, что проводниками электричества в газах являются заряженные частицы, образующиеся в результате действия рентгеновских лучей. Перед Томсоном встали вопросы: что это за частицы, каковы их заряд и масса. Поиски ответов на эти вопросы привели Томсона к открытию первой элементарной частицы — электрона и определению его заряда и массы.

Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишённых заряда частиц).

Согласно первой модели атома, построенной английским учёным Эрнестом Резерфордом (1871-1937), атом уподоблялся миниатюрной солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой: вращающиеся электроны, теряя свою энергию, в конце концов, должны были упасть на ядро. Но опыт показывает, что атомы являются весьма устойчивыми образованиями и для их разрушения требуются огромные силы. В связи с этим прежняя модель строения атома была значительно усовершенствована выдающимся физиком Нильсом Бором (1885-1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергию. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

Важнейшим достижением физики конца XIX в. было открытие радиоактивности. В 1896 г. Анри Беккерель, исследуя загадочное почернение фотографической пластинки, оставшейся в ящике письменного стола рядом с кристаллами сульфата урана, случайно открыл радиоактивность. Систематическое исследование радиоактивного излучения было предпринято Э. Резерфордом; он установил, что радиоактивные атомы испускают частицы двух типов, которые назвал альфа- и бета-частицами. Тяжелые положительно заряженные альфа-частицы, как выяснилось, представляли собой быстро движущиеся ядра гелия, а бета-частицы оказались летящими с большой скоростью электронами.

Мария Склодовская-Кюри, исследуя новое явление, пришла к выводу, что в урановых рудах присутствуют вещества, также обладающие свойством излучения, названного ею радиоактивным. В результате упорного труда Марии и Пьеру Кюри удалось выделить из урановых руд новый элемент — радий, радиоактивность которого по сравнению с ураном значительно выше.

Изучение радиоактивных явлений поставило перед физиками, во-первых, вопрос о природе радиоактивного излучения и, во-вторых, задачу определения источника энергии, которую несут эти лучи. Уже вскоре после открытия Беккереля стало ясно, что радиоактивное излучение неоднородно и содержит три компонента, которые получили название α-, β- и γ-лучей. При этом оказалось, что α - и β-лучи являются потоками соответственно положительно и отрицательно заряженных частиц, а у-лучи представляют собой электромагнитное излучение. Но что это за энергия, находящаяся внутри атома, которая освобождается при его распаде и выделяется вместе с излучением, было неясно, как и вообще «механизм» самого радиоактивного распада. Первые теории, разрабатывавшиеся для решения этого вопроса, были сугубо предварительными и неубедительными.

К великим открытиям второй половины XIX в. следует также отнести создание Периодической системы химических элементов Д.И. Менделеевым, экспериментальное обнаружение электромагнитных волн Г. Герцем, открытие явления фотоэффекта, тщательно проанализированное А.Г. Столетовым. В этом же ряду обнаружение того, что отношение заряда электрона к его массе не является постоянной величиной, а зависит от скорости электрона.

Открытие зависимости массы электрона от скорости и объяснение этого факта наличием электромагнитной массы вызвали вопрос, обладает ли вообще электрон массой в смысле классической механики. Как соотносятся между собой «обычная» масса и электромагнитная? Сама возможность ответа на эти вопросы была проблематичной, поскольку не был известен эксперимент, с помощью которого можно отделить обычную массу от электромагнитной. Возникла гипотеза, что электрон вообще имеет только электромагнитную массу, а обычной массой не обладает. Развитие этой гипотезы подводило к выводу, что вообще всякая масса (а значит, материя) имеет электромагнитную природу. Такой вывод революционным образом менял взгляды физиков на природу материи и ее познание.

Кризис в физике на рубеже веков. С XVII в. в физике и механистической философии массу понимали как количество материи в теле и рассматривали как основной признак материальности. Открытие зависимости массы электрона от его скорости, гипотеза о чисто электромагнитной природе массы как будто лишали тела материальности. Возник вопрос об исчезновении массы и материи вообще, поскольку масса понималась как основной признак материальности тела. Некоторые физики и философы высказывали мнение о том, что «материя исчезла», что саморазвитие науки заставляет отказаться от признания существования материи и справедливости общих важнейших физических законов (закона сохранения массы, закона сохранения количества движения и др.). Ситуация усугублялась с открытием радиоактивности. Ведь не было ответа на вопрос об источнике энергии, которую несет с собой радиоактивное излучение. В связи с этим высказывалось сомнение и во всеобщности закона сохранения энергии.

В таких условиях в физике складывается атмосфера разочарования в возможностях научного познания истины, начинается «брожение умов», распространяются идеи релятивизма и агностицизма. Ситуацию, сложившуюся в физической науке на рубеже XIX—XX вв., А. Пуанкаре назвал кризисом физики [1]. «Признаки серьезного кризиса» физики он в первую очередь связывал с возможностью отказа от фундаментальных принципов физического познания. «Перед нами «руины» старых принципов, всеобщий «разгром» таких принципов», — утверждал он. Закон сохранения массы, закон сохранения количества движения, закон сохранения энергии — все эти фундаментальные принципы, которые долгое время считались незыблемыми, теперь подвергают сомнению.

Многие ученые, пытаясь осмыслить состояние физики, приходили к выводу о том, что само развитие науки показывает ее неспособность дать объективное представление о природе, что истины науки носят относительный характер, не содержат ничего абсолютного, что не может быть и речи ни о какой объективной реальности, существующей независимо от сознания людей. Пуанкаре, например, считал, что необходимо изменить взгляд на ценность науки, на характер истин, добываемых наукой. Если прежде их рассматривали как отражение действительных свойств мира, то новейшее развитие физики, по мнению Пуанкаре, заставляет отказаться от такого взгляда. Наука не способна открывать сущность вещей. Ничто не в силах открыть эту сущность. Научные истины носят конвенциональный характер, они лишь результат соглашений ученых между собой о том, как удобнее выразить то или другое относительное знание. Некоторые физики (Э. Мах, Р. Авенариус и др.) шли еще дальше и полностью переходили на позиции субъективного идеализма. Они исходили из того, что «материя исчезла» потому, что не природа дает нам законы, а мы устанавливаем их, и, вообще, всякий закон есть не что иное, как упорядочение наших субъективных ощущений, и т.д. Многие физики скатились на позиции «физического идеализма», т.е. отказа от основной посылки физического знания — признания материальности объекта физического познания.

К концу XIX в. механистическая, метафизическая, предметоцентрическая методология себя исчерпала. Естествознание стремилось к новой диалектической, системоцентрической методологии. Поиски новой методологии были не простыми, сопряженными с борьбой мнений, школ, взглядов, философской и мировоззренческой полемикой. В конце концов в первой четверти XX в. естествознание нашло свои новые методологические ориентиры, разрешив кризис рубежа веков.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: