Дыхание

Одним из важнейших направлений развития здоровья специалиста является постановка дыхания. Не секрет, что практически каждый из нас сталкивался с проблемой дыхания при выполнении той или иной физической работы (выполнении тяжелых физических упражнений), когда результат оказывается плачевным только потому, что не хватило «дыхалки».

Вернемся к рассмотрению, казалось бы, всем известного процесса – акта дыхания.

Дыхание является одной из наиболее важных физиологических функций человеческого организма, связанных с обменом веществ. Посредством дыхания осуществляется обеспечение организма кислородом и выделение из него углекислого газа.

Дыхание включает следующие процессы:

- обмен воздуха между внешней средой и альвеолами легких (внешнее дыхание, или вентиляция легких);

- обмен газов между альвеолярным воздухом и кровью, протекающей через легочные капилляры (диффузия газов в легких);

- транспорт газов кровью;

- обмен газов между кровью и тканями в тканевых капиллярах (диффузия газов в тканях);

- потребление кислорода клетками и выделение ими углекислоты (клеточное дыхание).

Внешнее дыхание осуществляется в результате ритмических дыхательных движений грудной клетки. Акт вдоха (инспирация) совершается вследствие увеличения объема грудной полости. Это происходит в результате поднятия ребер и опускания диафрагмы. При этом поднятие ребер обеспечивается сокращением наружных межреберных и межхрящевых мышц, а опускание диафрагмы – сокращением ее мышечных волокон. При форсированном (усиленном) дыхании в акте вдоха участвует ряд вспомогательных дыхательных мышц, разгибающих грудной отдел позвоночного столба и фиксирующих плечевой пояс с откинутыми назад плечами.

Акт выдоха (экспирация) происходит обычно пассивно: в результате расслабления дыхательных мышц под тяжестью ребер и под действием упругих сил реберных хрящей, стенок живота и брюшных внутренностей. При форсированном выдохе объем грудной клетки дополнительно уменьшается в результате сокращения внутренних межреберных мышц, мышц живота, оттесняющих органы брюшной полости и купол диафрагмы кверху. Помещенные внутри грудной клетки легкие отделены от ее стенок плевральной полостью (плевральная щель). При вдохе, когда объем грудной клетки увеличивается, давление в плевральной щели уменьшается, объем легких растет, и давление в них понижается.

При выдохе, когда объем грудной полости уменьшается, давление в плевральной щели немного увеличивается, растянутая легочная ткань несколько сжимается, а давление в легких незначительно повышается.

Как во время вдоха, так и во время выдоха эластичная ткань легких остается в растянутом состоянии. Это является причиной того, что давление в плевральной щели во время спокойного вдоха на 9 мм рт. ст., а во время спокойного выдоха на 6 мм рт. ст. ниже атмосферного.

Жизненная емкость легких приблизительно в 8 раз больше их дыхательного объема (в состоянии покоя). Это позволяет за счет изменения глубины дыхания при постоянном числе дыхательных движений (в состоянии покоя 16–20 дыхательных движений в минуту) изменять минутный объем вентиляции легких. Объем выдыхаемого воздуха по сравнению с объемом вдыхаемого воздуха несколько меньше в связи с тем, что углекислого газа выделяется меньше, чем поглощается кислорода, так как последний частично используется в организме на окисление водорода и образование воды, выделяемой с мочой и потом. Состав выдыхаемого воздуха отличается меньшим содержанием кислорода (около 16,3 %) и большим содержанием углекислого газа (около 4 %) по сравнению с составом атмосферного (вдыхаемого) воздуха (соответственно 20,94 % и 0,03 %). При этом состав выдыхаемого воздуха существенно зависит от интенсивности обмена веществ организма и от объема легочной вентиляции.

Газообмен в легких осуществляется в результате диффузии углекислого газа из крови в альвеолярный воздух и кислорода из альвеолярного воздуха в кровь. Диффузия газов происходит вследствие разности между парциальным давлением этих газов в альвеолярном воздухе и напряжением их в крови. Напряжение кислорода в артериальной крови равно 100 мм рт. ст., а углекислого газа – 40 мм рт. ст., в венозной же крови напряжение кислорода равняется 40 мм рт. ст., а углекислого газа – 46 мм рт. ст. Парциональное давление кислорода в альвеолярном воздухе составляет примерно 102 мм рт. ст., а углекислого газа – 40 мм рт. ст. Разность между напряжением газов в венозной крови и их давлением в альвеолярном воздухе равна для кислорода приблизительно 62 мм рт. ст., а для углекислого газа, имеющего значительно большую скорость диффузии, – 6 мм рт. ст. За короткое время пребывания крови в легочных капиллярах напряжение газов в крови почти сравнивается с их парциальным давлением в альвеолярном воздухе.

Кислород и углекислый газ находятся в крови не только в физически растворенном, но и в химически связанном состоянии. Кислород в крови связан с гемоглобином, поэтому кислородная емкость крови (порядка 19 %) определяется содержанием в ней гемоглобина. Связывание кислорода с гемоглобином (с образованием оксигемоглобина) зависит от напряжения кислорода в крови и является легко обратимым процессом. При понижении напряжения кислорода оксигемоглобин отдает кислород. Углекислый газ только частично связан с гемоглобином; большая же часть его находится в крови в виде бикарбоната, образующегося в эритроцитах. Таким образом, в механизме транспорта кровью кислорода и углекислого газа важнейшая роль принадлежит эритроцитам, в которых содержатся гемоглобин и карбоангидраза.

В тканях кровь отдает кислород и поглощает углекислоту. Газообмен в капиллярах тканей также обусловлен диффузией вследствие разности напряжения газов в крови и тканях. Напряжение углекислого газа в клетках может достигать 60 мм рт. ст., в тканевой жидкости – около 46 мм рт. ст. Диффузируя по направлению более низкого напряжения, углекислый газ переходит из клеток в тканевую жидкость и далее в кровь, делая ее венозной. Клетки весьма энергично потребляют кислород, поэтому его напряжение в протоплазме клеток очень низкое (близкое к нулю), а в тканевой жидкости составляет порядка 20–40 мм рт. ст. Кислород непрерывно поступает в тканевую жидкость; в оттекающей от тканей венозной крови напряжение кислорода снижается до 40 мм рт. ст. Таким образом, кровь отдает приблизительно 30–40 % содержащегося в ней кислорода. Коэффициент утилизации кислорода увеличивается (до 50–60 %) при повышенных физических нагрузках.

Поступающий в клетки кислород обеспечивает тканевые окислительные процессы, происходящие в них с освобождением энергии и выделением углекислого газа и других веществ – продуктов жизнедеятельности.

Координированная ритмическая деятельность дыхательных мышц и приспособление дыхания к условиям внешней и внутренней среды организма обеспечиваются дыхательным центром, представляющим совокупность нервных клеток, расположенных в разных отделах центральной нервной системы. Факторами, вызывающими возбуждение дыхательного центра, являются напряжение углекислого газа и напряжение кислорода в крови. При понижении напряжения кислорода в крови наблюдается рефлекторное учащение ритма дыхания, а при незначительном повышении напряжения углекислого газа в крови происходит рефлекторное углубление дыхательных движений. Существенным в регуляции дыхания является то, что понижение напряжения углекислого газа в крови угнетает деятельность дыхательного центра и приводит к уменьшению объема вентиляции легких.

Для регуляции дыхательной деятельности характерны рефлекторность и автоматия. Однако в процессах регуляции дыхания принимают участие также вышележащие отделы центральной нервной системы. Важная роль в регуляции дыхания принадлежит большим полушариям головного мозга и их коре, благодаря которой осуществляется приспособление дыхательных движений при разговоре, различных видах деятельности.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: