Электрический колебательный контур. Затухающие колебания

Электрическим колебательным контуром называют замкнутую цепь, состоящую из конденсатора С и катушки индуктивности L (рис. 9.8). Периодически повторяющиеся изменения силы тока в катушке и напряжения на конденсаторе при отсутствии внешних воздействий называются свободными колебаниями.

При подключении к обкладкам заряженного конденсатора (рис. 9.8 а) катушки индуктивности в ней возникает ток. Если электрическое сопротивление катушки пренебрежимо мало, то энергия электрического поля Wе заряженного конденсатора начинает превращаеться в энергию магнитного поля Wм. Мгновенной раз­рядке конденсатора препятствует ЭДС самоиндукции, сдер­живающая процесс возрастания силы тока в катушке.

В тот мо­мент, когда конденсатор полностью разрядится, сила тока в катушке и энергия магнитного поля достигнут максимальных (амплитудных) значений (рис. 9.8 б). После разрядки конденсатора ток в катушке убывает, но это приводит к уменьшению магнитного потока, что вызывает появ­ление в катушке ЭДС самоиндукции и индукционного тока. Сейчас на­правление индукционного тока таково, что он препятствует умень­шению магнитного потока.

Конденсатор заряжается индукционным током катушки. Когда ток исчезнет, конденсатор окажется заряженным до первоначального значения заряда, но противоположного знака (рис. 9.8 в). После этого происходит следующий процесс перезарядки конденсатора током, протекающим в противоположном направлении (рис. 9.8 г), и возврат в исходное состояние после совершения одного полного колебания (рис. 9.8 д). В верхней части рисунка показаны значения времени соответ­ству­ющих состояний, выраженные в долях периода

, где w0 – круговая (циклическая) частота колебаний в контуре.

Из закона сохранения энергии следует, что при отсутствии в контуре сопротивления максимальное значение энергии We электрического поля заряжен­ного конденсатора равно максимальному значению энергии магнитного поля Wм катушки: , откуда можно получить связь амплитудных значений тока в катушке и напряжения на конденсаторе: . Это отношение имеет размерность сопротивления, поэтому величину называют волновым, или характеристическим сопротивлением контура.

Рис. 9.9. Реальный колебательный контур

В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей по­степенно превращается во внутреннюю энергию. Свободные электромагнитные колебания в контуре оказываются затухающими.

Потери энергии в контуре можно учесть путем введения активного сопротивления (рис. 9.9). Поскольку потери в диэлектрике конденсатора малы, это сопротивление практически равно активному сопротивлению катушки индуктивности. Считая направление тока, заряжающего конденсатор, положительным, запишем закон Ома для участка цепи от отрицательно заряженной обкладки конденсатора 1 до положительно заряженной 2. В соответствии с (2.13) получаем: .

Направление обхода контура от точки 1 к точке 2 совпадает с направлением тока, поэтому произведение iR положительно. ЭДС самоиндукции по правилу Ленца отрицательна. Так как потенциал отрицательно заряженной пластины меньше, чем потенциал положительной, разность потенциалов (j1- j2) отрицательна: , где q – заряд на конденсаторе. Изменение заряда конденсатора вызывается током, поэтому . С учетом вышеизложенного на основании закона Ома можно записать:

, или

, (9.8)

где b = R/2L – коэффициент затухания, - собственная частота[1].

Дифференциальное уравнение (9.8) подобно уравнению, полученному для механического пружинного маятника (см. раздел "Механика"). Решение данного уравнения имеет вид: , (9.9)

Рис. 9.10. Колебания заряда на конденсаторе в контуре с потерями

где q0 - амплитуда тока в начальный момент времени,

(9.10)

- частота затухающих колебаний. Из (9.9) следует, что уменьшение амплитуды со временем происходит по экспоненциальному закону (рис. 9.10). Частота затухающих колебаний меньше частоты собственных колебаний w0. Из (9.10) следует, что при большом затухании (b ³ w0) частота становится мнимой величиной. Это означает, что колебательного процесса не происходит и заряд конденсатора уменьшается до нуля без перезарядки. Такой процесс называется апериодическим.

Выразим условие перехода от колебательного процесса к апериодическому через параметры цепи. Имеем: (R/2L)2 ³ 1/LC или .

Степень затухания колебаний принято характеризовать логариф­мичес­ким декрементом затуханияl. Он равен логарифму натуральному двух амплитуд через период Т:

или (9.11)

Еще одной характеристикой контура является добротность. Она связана с логарифмическим декрементом затухания соотношением . Нетрудно показать, что при малом затухании, когда b << w0 и w'» w0, добротность выражается через параметры колебательного контура следующим образом: , (9.12)

то есть равна отношению характеристического сопротивления контура к активному сопротивлению потерь.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: