Система обозначений некоторых изделий электрической технике

КОНСПЕКТ ПО ЭЛЕКТРОНИКЕ


Оглавление.

КОНСПЕКТ ПО ЭЛЕКТРОНИКЕ.. 1

Оглавление. 2

Роль электроники в создании интегрированных систем управления машинами и механизмами. Социально-экономический аспект создания, развития производства и эффективного использования электронной техники в народном хозяйстве. 6

Базовые понятия электронной техники. Источник тока. Источник напряжения. Согласование источника с нагрузкой. Пассивные элементы электрической цепи и их параметры. Резисторы, конденсаторы, катушки индуктивности и их соединение. Трансформаторы. Типы пассивных элементов, их особенности и области применения. Коэффициент нагрузки. Цифробуквенная система обозначения пассивных элементов на принципиальных схемах и на изделиях. 10

Виды и параметры электрических сигналов. Амплитудное, действующее, среднее значение напряжения и тока электрического колебания. Длительность импульса, период следования, частота, скважность, фронт и спад импульса. 18

Основные понятия теории электропроводности полупроводников. Электронно-дырочный p-n-переход. Вольтамперные характеристики. Дрейфовый и диффузионный ток. Барьерная и диффузионная емкость p-n-перехода. Возможность их использования и влияние на характеристики диодов. Виды пробоя p-n-перехода. 24

Полупроводниковые диоды. Принцип действия. Классификация, параметры. Выпрямительные диоды и мосты. Параллельное и последовательное соединения диодов. Стабилитроны и стабисторы. Варикапы. Диоды Гана, Шотки, туннельные, обращенные, лавинно-пролетные. 28

Беспереходные полупроводниковые приборы. Терморезисторы (термисторы, позисторы, терморезисторы с косвенным подогревом), варисторы, тензорезисторы, магниторезисторы, датчик Холла, основные характеристики. Области их применения. 35

Система обозначения отечественных и импортных полупроводниковых приборов (диодов, тиристоров, транзисторов, электронных микросхем) 37

Фотоэлектрические и излучающие в видимом, ИК и УФ диапазоне полупроводниковые приборы. Полупроводниковые лазеры. Оптоэлектронные пары. Их применение. Системы динамической индикации. 41

Тиристоры. Конструкция и принцип действия. Режим работы, классификация, обозначение, параметры. Диодные, триодные, тетродные, запираемые и незапираемые транзисторы. ВАХ тиристора, процесс перехода из закрытого состояния в открытое и обратно. Типы, условные обозначения тиристоров. Работа тиристора в цепях постоянного тока. Фазовое управление тиристорами. Регуляторы и стабилизаторы напряжения на тиристорах. 48

Динисторы имеют нормированное напряжение включения анод – катод. 53

Биполярные транзисторы (БПТ). Электрические и эксплуатационные параметры. Входные, выходные и проходные характеристики. Схемы замещения транзистора и их дифференциальные параметры. Статистические характеристики (h-параметры) БПТ. Схемы включения БПТ (с общим эмиттером, общим коллектором, общей базой). Их сравнительный анализ и области применения. Уравнение Эберса-Молла, температурный коэффициент тока коллектора, внутреннее сопротивление эмиттера, максимальный коэффициент усиления по напряжению эффект Эрли, эффект Миллера. 53

Униполярные (полевые) транзисторы (ПТ). Принцип действия ПТ с p-n-переходом. Стоковая (выходная) и стоко-затворная (проходная) характеристики ПТ, основные параметры. ПТ металл – диэлектрик – полупроводник (МДП) и металл – окисел – полупроводник (МОП) со встроенным и индуцированным каналами, конструкция, характеристики и параметры. Полярность подаваемых напряжений и особенности применения ПТ. Схемы включения ПТ с общим истоком (ОИ), общим стоком (ОС), общим затвором (ОЗ). Сравнительный анализ БПТ и ПТ. IGBT транзисторы.. 61

Основные параметры и характеристики электронных усилителей. Общие сведения. Основные свойства, классификация и структура усилителя. Амплитудно-частотная, амплитудная и фазовая характеристики. Их основные параметры. Шумы усилителя (тепловой, дробовой, фликкер-шум). Шумы тока и напряжения. Критерии применения ПТ и БПТ исходя из требований минимизации шумов при различных сопротивлениях источника сигнала. Синфазные и противофазные помехи. Способы их уменьшения и экранирования. 65

Усилительные каскады на ПТ и БПТ. Статистический режим работы усилительного каскада, выбор рабочей точки, схемы задания напряжения смещения БПТ. Расчет по постоянному и переменному току каскадов с ОЭ и ОК. Сравнительный анализ каскадов ОЭ, ОК, ОБ. Каскад с ОЭ как преобразователь напряжение-ток, фазоинверсный каскад. Усилительные каскады на ПТ, схемы задания напряжения смещения, особенности их работы и включения. Динамическая нагрузка, источник тока, токовые зеркала и отражатели тока на ПТ и БПТ. Ослабление влияния температуры и эффекта Эрли. Токовое зеркало Уилсона, выходное сопротивление источника тока. Области применения. 70

Обратные связи (ОС) в усилителях. Положительная (ПОС) и отрицательная (ООС) обратные связи. Коэффициент ОС и глубина ОС. Влияние ОС на параметры и характеристики усилителей. Последовательная и параллельная ООС по напряжению и току, следящая ПОС. Примеры принципиальных схем с ОС.. 76

Интегральные микросхемы. Интегральный принцип изготовления и применения электронных компонентов. Полупроводниковые интегральные микросхемы, их классификация, назначение, области применения. Аналоговые, цифровые и аналого-цифровые микросхемы.. 84

Источники вторичного электропитания электронных устройств. Классификация и параметры выпрямителей. Однополупериодные и двухполупериодные мостовые и со средней точкой, однофазные и трехфазные, управляемые и неуправляемые выпрямители. Схема Ларионова. Умножители напряжения. Схема Латура. Сглаживающие фильтры.. 87

Стабилизаторы напряжения и тока. Структурная схема стабилизированного источника питания. Параметрические и компенсационные, параллельные и последовательные, регулируемые и нерегулируемые, однополярные и разнополярные стабилизаторы напряжения и тока. Стабилизаторы на ОУ. Защита по току и напряжению. Ключевые повышающие, понижающие и инвертирующие (повышающе-понижающие) стабилизаторы. Функциональные схемы ключевых стабилизаторов и импульсных блоков питания малогабаритных устройств. Принципиальная схема стабилизаторов. 93

Усилители постоянного тока (УПТ). УПТ с непосредственной связью между каскадами и типа модуляция-демодуляция (МДМ). Способы модуляции. Дифференциальные усилительные каскады (ДУ) на БПТ и ПТ. Способы компенсации смещения и дрейфа. Сравнительный анализ и области применения. Работа ДУ в режиме синфазного и противофазного сигнала и при использовании динамической нагрузки. 98

Интегральные операционные усилители (ОУ) и их применение. Разновидность и обозначение ОУ. Типы входных каскадов. Упрощенная схема ОУ. Назначение каскадов. Коэффициент ослабления синфазного сигнала и влияние напряжения сигнала. Амплитудно-частотная и фазо-частотная характеристики, основные параметры ОУ. Способы уменьшения напряжений сдвига и дрейфа. Граничная частота усиления и максимальная скорость нарастания выходного сигнала. 112

Примеры построения аналоговых схем на ОУ (инвертирующие и неинвертирующие усилители, повторители, сумматоры, вычитатели, интеграторы, дифференциаторы, фильтры высоких и низких частот, полосовые и режекторные фильтры, гираторы, преобразователи ток-напряжение, точные выпрямители, нуль-органы, электронные реле, выпрямители и др.). Применение ОУ в робототехнике и системах управления. 117

Формирователи и генераторы импульсных сигналов на ОУ. Компараторы, триггеры Шмитта. Генераторы линейно-измеряющегося напряжения на ОУ.. 121

Усилители мощности. Режимы работы усилительных каскадов (активный, инверсный, отсечки, насыщения) и их применение. Однотактные усилители мощности. Двухтактные трансформаторные и бестрансформаторные усилители мощности. Выходные каскады комплиментарные и на транзисторах одной проводимости. Фазоинверторы. Емкостная и гальваническая связь с нагрузкой. Нелинейные искажения в усилителях мощности и методы их уменьшения. Режимы работы класса A, B, AB, C, D, сравнительный анализ и области их применения. Способы задания напряжения смещения и температурной стабилизации. Включение транзисторов по схемам Дарлингтона и Шиклаи. Тепловое сопротивление. Обеспечение тепловых режимов выходных каскадов на ПТ и БПТ. 125

Генераторы гармонических колебаний. Условия самовозбуждения генераторов (баланс фаз и баланс амплитуд). Автогенераторы. Стабилизация частоты и амплитуды в автогенераторах. Мультивибраторы. Симметричные и несимметричные мультивибраторы на ОУ. 130

=Активные и пассивные фильтры. Фильтры высоких частот (ФВЧ) и низких частот (ФНЧ). Полосовой и режекторный (заградительный), LC и RC фильтры. Полоса пропускания, полоса заграждения, добротность, затухание, крутизна спада на переходном участке. Фильтры Баттерворта, Бесселя, Чебышева и др. Достоинства и недостатки. Фильтр Салена и Кея. Фильтр с параллельной ОС, универсальный и биквадратный фильтр, гиратор. 134

=Модуляция. Виды модуляции: амплитудная, частотная, фазовая. Достоинства, недостатки. Импульсные виды модуляции: амплитудно-импульсная (АИМ), кодо-импульсная (КИМ), широтно-импульсная (ШИМ), фазо-импульсная (ФИМ). Области применения. Структурная схема импульсного блока питания. 147

=Ключевые преобразователи напряжения. Прямоугольные и резонансные. Однотактные и двухтактные. С прямым и обратным включением диода. Мостовые, полумостовые, со средней точкой. С независимым и самовозбуждением. Транзисторные и тиристорные. Особенности использования и области применения. 151

!!!Логические основы цифровых устройств и ЭВМ. Двоичные переменные и переключательные функции, основные логические функции, основные законы алгебры логики, формы представления и минимизация переключательных функций. 157

!!!Элементарная база цифровых микросхем. Логические элементы И, ИЛИ, НЕ на диодах, биполярных и полевых транзисторах. Базовые логические элементы диодно-транзисторной, транзисторно-транзисторной, эмиттерно-связанной логики. Логические элементы на однотипных и комплементарных МДП-транзисторах. Логические элементы с тремя выходными состояниями. Микросхемы с открытым коллектором. Совместное применение микросхем разных серий. 161

!!!Интегральные триггеры. Асинхронные и синхронные триггеры. RS-, JK-, D- и Т-триггеры. Принцип действия, структурные и принципиальные схемы, временные диаграммы работы триггерных схем, их основные параметры. Применение триггерных схем для создания цифровых систем управления. 170

!!!Счетчики импульсов. Двоичные счетчики и счетчики с произвольным коэффициентом счета. Принцип действия, структурные и принципиальные схемы, временные диаграммы работы счетчиков, их основные параметры. Разновидности счетчиков, особенности использования счетчиков при создании цифровых систем управления. 179

!!!Регистры. Параллельные, последовательные и параллельно-последовательные регистры. Структурные схемы, особенности работы и основные параметры регистров различных типов. Применение регистров в цифровых системах управления. 184

!!!Двоичные сумматоры. Одноразрядные двоичные сумматоры. Параллельные многоразрядные сумматоры. Структурные схемы, особенности работы. Основные параметры. 188

=Таймеры. Однотактный и многотактный таймеры. Мультивибраторы на однотактном таймере. Мультивибраторы на однотактном таймере, с регулируемыми длительностями импульсов и пауз, с регулируемой скважностью………..................192


Роль электроники в создании интегрированных систем управления машинами и механизмами. Социально-экономический аспект создания, развития производства и эффективного использования электронной техники в народном хозяйстве

Электроника — это область науки и техники, занимающаяся разработкой и проектированием приборов, использующих движение заряженных частиц в вакууме, газах и твердых телах (в основном в полупроводниках), и созданием устройств на их основе. Это наука, развивающаяся быстрыми темпами с начала ХХ века и оказывающая огромное влияние на развитие цивилизации.

Начало развития электроники (вакуумные лампы: диод 1903 г., триод 1905 г.) тесно связано с необходимостью развития связи и прежде всего радиосвязи. Можно отметить, что до 1939 г. развитие электронных ламп и схем связано с их использованием в основном для нужд радиовещания, которое было в то время самым важным потребителем электроники. В тот период возникло большинство электронных ламп, известных в настоящее время, и основные электронные схемы, используемые и теперь в разных модификациях.

Промышленная электроника, занимающаяся использованием электронных элементов и схем в промышленности, как область техники гораздо моложе. Первые попытки использования ламповых схем в промышленности, прежде всего в измерительных установках, относятся к тридцатым годам прошлого века. Однако они не дали хороших результатов вследствие недолговечности, большой массы и габаритов электронных ламп, хотя другие характеристики этих устройств были удовлетворительные. Результаты этих первых экспериментов были использованы в широком масштабе только во время второй мировой войны, когда возросшие производственные потребности необходимо было удовлетворять в условиях чувствительной нехватки рабочей силы. Автоматизация производства, внедрение которой начато было в тот период, не могла осуществляться без электронных устройств. Электронные схемы также оказались незаменимыми в некоторых измерительных и контрольных установках.

Развитие промышленной электроники значительно ускорилось в послевоенный период, особенно после начала широкого применения полупроводниковых приборов в пятидесятых годах (1947 г. — появление первого транзистора). С появлением полупроводниковых приборов стали возможными значительная миниатюризация устройств и уменьшение потребляемой ими мощности, увеличение времени безотказной работы и т. п. Только теперь можно было приступить к построению весьма сложных электронных устройств, например вычислительных машин небольших габаритов, низкой стоимости и высокой надежности, соответствующих промышленным требованиям.

В последние годы определились следующие основные области применения электронных схем в промышленности:

· устройства для измерения различных физических величин как электрических, так и неэлектрических;

· устройства для исследования материалов, например металлов, электрическими и магнитными методами без их разрушения;

· устройства для регулирования и автоматического управления различными процессами или промышленными установками, а также для управления различными объектами хозяйства;

· промышленные телевизионные установки, используемые для контроля и наблюдения за различными объектами или процессами;

· вспомогательные устройства, используемые в некоторых технологических процессах, например термопроцессах (нагрев токами высокой частоты) или обусловленных ультразвуковым облучением (коагуляция, обработка, очистка поверхности и т. д.).

При измерении электрических величин электронные схемы требуются в тех случаях, когда электрические эффекты настолько незначительны, что исследовать их классическими методами невозможно. Это происходит, например, при измерении малых токов и напряжений, малых изменений емкости и т. д., если чувствительность обычных вольтметров, амперметров или мостов недостаточна для проведения измерений. В этом случае необходимо усилить измеряемую величину до значения, фиксируемого обычными методами. Подобные проблемы часто возникают при измерении неэлектрических величин электрическими методами, когда возникающие в первичном измерительном преобразователе сигналы незначительны. В этом случае усиление производится при помощи электронных схем.

Большое значение имеют также электронные устройства для исследования свойств материалов разными методами. Многие из этих методов основаны на связи между механическими и электрическими или магнитными свойствами исследуемых материалов. Исследование материала можно свести к измерению его характеристик магнитным или электрическим методом, что очень удобно, поскольку такое измерение легко осуществить, его можно автоматизировать и т. д. При этом исследование не приводит к разрушению или повреждению изделия. Это очень важно, так как исследования, приводящие к разрушению испытуемого образца, например разрыву, могут проводиться только на немногих экземплярах изготовленной партии изделий. Следовательно, в этом случае результаты измерений носят случайный характер и не дают полной уверенности в качестве изделий, которые не подвергались испытанию. Неразрушающие методы испытаний более надежны, поскольку их можно применить ко всей изготовленной партии, т. е. проверить каждое изготовленное изделие.

Автоматическое управление и контроль технологических процессов являются теперь одними из наиболее характерных особенностей быстрого развития техники. В этой новой быстро развивающейся области техники электронные устройства являются очень важным, а часто и обязательным элементом, от свойств которого зависит качественная работа всей регулируемой системы. Последние достижения автоматики, связанные с использованием электронных вычислительных машин, были бы при современном уровне развития техники невозможны без электронных схем. Тесная связь автоматики и электроники обусловливает надлежащий прогресс обеих этих областей техники.

Электроника также тесно связана с некоторыми технологическими процессами, в которых электронные устройства обычно используются в качестве источников токов высокой частоты. Это — процессы высокочастотного нагрева, а также процессы, связанные с излучением ультразвука большой мощности. Электронная схема в таком устройстве служит для создания токов высокой частоты необходимой мощности, и следовательно, она только косвенно связана с данным технологическим процессом, тем не менее она является обязательной.

Телевизионные устройства могут передавать образ любого промышленного объекта на произвольное расстояние, например к диспетчеру или к обслуживающему персоналу. Промышленное телевидение играет важную роль, там, где из-за условий работы невозможны непосредственные наблюдения, например в отравленной атмосфере, на участках с большим уровнем радиации (атомные реакторы) и т. п.

Робототехника как новое научно-техническое направление возникла в результате огромного прогресса в развитии вычислительной техники и ме­ханики. Роботы представляют новый класс машин, выполняющих одновре­менно функции рабочих и информационных машин.

Возникновение робототехники обусловлено потребностями развиваю­щегося общества. Удовлетворение все возрастающих потребностей населе­ния возможно только на основе дальнейшего роста производительности труда. Важнейшим резервом этого роста в условиях дефицита трудовых ресурсов является комплексная механизация и автоматизация производст­ва. Большие успехи автоматизации машиностроения в массовом и крупно­серийном производстве на основе использования неперепрограммируемых автоматических устройств позволили получить высокую производитель­ность труда при минимальной себестоимости продукции. Однако 70 % современной продукции машиностроения выпускается малыми и средними сериями. В этих условиях не могут быть применены традиционные средства автоматизации и необходимая гибкость производства достигается за счет использования ручного труда.

Дифференциация процесса производства на ряд многократно повторяю­щихся простых операций привела к монотонным, утомительным трудовым действиям, выполняемым людьми на конвейере. Труд, лишенный творче­ского содержания, монотонный, опасный для жизни, должен быть уделом роботов.

Что же такое робот, каково научно-техническое содержание этого тер­мина? Существует большое число определений понятия "робот". Их анализ показывает, что к существенным свойствам робота относят его антропо­морфизм (уподобление человеку) при взаимодействии с окружающей сре­дой: универсальность, наличие элементов интеллекта, способность обучаться, наличие памяти, способность самостоятельно ориентироваться в окружающей среде и т.п. На основании указанных свойств сформулировано следующее определение. Робот — это машина-автомат, предназна­ченная для воспроизведения двигательных и умственных функций челове­ка, а также наделенная способностью к адаптации и обучению в процессе взаимодействия с внешней средой. Это машина-автомат нового типа. Обыч­ные автоматы предназначены для многократного выполнения одной и той же операции. Типичными примерами являются станки-автоматы, автома­ты для размена монет, продажи билетов, газет и т.д. В отличие от них роботы — универсальные системы многоцелевого назначения; они способ­ны не только выполнять много разных операций, но и оперативно переобу­чаться с одной операции на другую.

Роботы получили наибольшее распространение в промышленности и прежде всего в машиностроении. Такие роботы называются промышленны­ми.

Следует отметить следующие их достоинства.

Повышение безопасности труда — это одно из первоочередных назначе­ний роботов. Известно, что большинство несчастных случаев в промышлен­ности приходится на травмы рук, особенно при загрузочно-разгрузочных операциях. Применение роботов позволяет улучшить условия труда, по­тенциально опасного для здоровья людей: в литейных цехах, при наличии радиоактивных материалов, вредных химических веществ, при переработ­ке хлопка, асбеста и т.п.

При использовании роботов происходит интенсификация рабочего про­цесса, повышение производительности труда, стабилизация ее в течение смены, увеличение коэффициента сменности основного технологического оборудования, что улучшает технико-экономические показатели произ­водства. Повышается качество продукции. Так, например, улучшается ка­чество сварного шва в связи со строгим соблюдением технологического режима. Снижаются потери от брака, связанного с ошибками оператора. Возможна также экономия материалов. Например, при окраске автомобиля рабочим только 30 % краски попадает непосредственно на автомобиль, остальная уносится вентиляцией рабочего места. С применением роботов создаются принципиально новые производства и технологические процес­сы, максимально уменьшающие неблагоприятные воздействия на челове­ка.

Однако эффективность применения робота проявляется только при пра­вильной организации его взаимодействия с обслуживаемым оборудованием и внешней средой. Задача робототехники состоит не только в создании роботов, но и в организации полностью автоматизированных производств.

Внедрение роботов в производство сопряжено с определенными трудно­стями.

Роботы пока еще очень дороги и не всегда достаточно эффективны. Промышленный робот не всегда способен полностью заменить рабочего, обслуживающего технологическое оборудование или совершающего техно­логическую операцию, а может лишь освободить его от монотонного физи­ческого труда, изменив его характер и содержание, приближая к труду наладчика.

Основными факторами экономической эффективности роботов, учиты­ваемыми при ее расчете, являются как производственные, так и социаль­ные. Эта особенность отличает роботы от других вариантов новой техники, в связи с чем разработана специальная межотраслевая методика оценки экономической эффективности при их создании и использовании.


Базовые понятия электронной техники. Источник тока. Источник напряжения. Согласование источника с нагрузкой. Пассивные элементы электрической цепи и их параметры. Резисторы, конденсаторы, катушки индуктивности и их соединение. Трансформаторы. Типы пассивных элементов, их особенности и области применения. Коэффициент нагрузки. Цифробуквенная система обозначения пассивных элементов на принципиальных схемах и на изделиях

Источник напряжения - источник электрической энергии, который на своих внешних зажимах имеет неизменное напряжение, не зависящее от тока, потребляемого от этого источника.

r – внутреннее сопротивление генератора

R – сопротивление нагрузки

Е – ЭДС генератора

U = Е - I·r

Это достигается тогда, когда внутренне сопротивление источника близко к 0 или несоизмеримо мало по сравнению с сопротивлением нагрузки (идеальные условия r = 0). R>>r

Обычно для источников питания электронных устройств для задания неизменных режимов работы принимают R = 10r.

Rn≥10r0

Пример: - гальванический элемент

- аккумулятор

- стабилизаторы напряжения

Усиление – это процесс преобразования энергии источника питания в энергию выходного сигнала по закону входного сигнала.

Стабилизаторы напряжения используются в усилительных устройствах высокого качества для поддержания неизменных электрических режимов усилительных каскадов.

Источник тока - источник электрической энергии, который отдает во внешнюю цепь ток неизменного значения, независимо от сопротивления нагрузки. Это возможно, когда внешнее сопротивление нагрузки пренебрежимо мало по сравнению с внутренним сопротивлением источника.

Пример: Rст=

Используются:

1) В качестве динамической (или коллекторной) нагрузки транзисторного каскада с общим эммитером (основной усилительный каскад по напряжению) с целью увеличения коэффициента усиления по напряжению Кu;

2) Для задания неизменным рабочего тока через стабилитрон с целью увеличения его коэффициента стабилизации;

3) В эммитерной цепи дифференциального каскада с целью его симметрирования;

4) Для задания неизменными режимов электрических каскадов в операционных усилителях;

5) В электрохимии.

Согласование источника с нагрузкой: максимальная мощность выделяется на нагрузке в том случае, если ее сопротивление равняется сопротивлению источника.

Rн = r0 =>Pн =Pmax

Применяются в передатчиках для получения максимальной мощности и в высокочастотных цепях для получения минимального отражения волны от нагрузки, в СВЧ устройствах с целью увеличения коэффициента стоячей волны, в ВЧ устройствах (телевизор (75Ом), некоторых осциллографах (50 Ом)).

Пассивные элементы (резисторы, конденсаторы, катушки индуктивности) представляют на схемах в виде резистивного сопротивления R, ёмкости C, индуктивности L.

Резистивным сопротивлением называется идеализированный элемент, обладающий только свойством необратимого рассеяния энергии. Математическая модель определяется законом Ома:

, где R – сопротивление [R] – Ом; – проводимость [G] – Сименс.

Мощность участка цепи с сопротивлением:

Энергия, рассеиваемая резистором к моменту времени t:

Резисторы бывают широкого применения и точные. У точных – обычно меньшие уровень собственных шумов и температурный коэффициент напряжения. Резистор характеризуется также максимальной рассеиваемой мощностью, которая не должна превышаться.

Соединение резисторов:

При параллельном соединении общее сопротивление определяется сопротивлением наименьшего ; при последовательном – наибольшим .

Катушкой индуктивности называется идеализированный элемент, обладающий только свойством накопления энергии в его магнитном поле. Математическая модель:

, где

– потокосцепление.

[L] – Генри (Гн).

Потокосцепление характеризует суммарный магнитный поток, пронизывающий участок цепи или индуктивную катушку.

индуктивное сопротивление цепи.

Связь между u и i определяется законом электромагнитной индукции:

Напряжение опережает ток на 90˚ по фазе.

Мощность:

Энергия магнитного поля индуктивности к моменту t определяется как интеграл:

Если магнитные потоки само- и взаимоиндукции двух катушек направлены в одну и ту же сторону, то такое включение называется согласным. При согласном включении конец одной катушки совпадает с началом другой, если они намотаны в одну сторону.

, где М – коэффициент взаимоиндукции (при согласном включении «+», при встречном – «-»).

, k – коэффициент связи между катушками .

Если .

При параллельном соединении катушек индуктивности .

Если .

Ёмкость характеризует энергию, которая накапливается в электрическом поле конденсатора.

– математическая модель ёмкости; [ С ] – Фарад (Ф)

Ток опережает напряжение на 90˚ по фазе

При последовательном включении конденсаторов , при параллельном

Конденсатор электролитический обладает самой большой емкостью. Используется в фильтрах питания и в переходных конденсаторах, где изменение емкости на 20 – 30% не играет определяющей роли. Чем больше емкость, тем меньше пульсация (соединение конденсаторов).

Трансформатор устройство, основанное на явлении взаимоиндукции и передающее электрическую энергию из одной цепи в другую без непосредственного контакта между ними.

В простейшем случае состоит из двух обмоток, связанных общим магнитным потоком Ф, который замыкается по воздуху или через сердечник.

- магнитный поток;

- ЭДС, наводимая этим магнитным потоком;

– эдс, наводимая в первичной и вторичной обмотках; W1 и W2 – число витков этих обмоток.

Коэффициент трансформации:

КПД трансформатора:

близок к 1 (90 – 95%)

Коэффициент нагрузки характеризует надежность работы. Показывает, какова в процентном отношении реальная нагрузка на данный элемент по сравнению с допустимой.

В зависимости от мощности и типа к резисторам могут прикладываться определенные значения напряжения. Это отношение значения реального параметра при сохранении высокой надежности, которое можно прикладывать к данному прибору, к максимальному значению, указанному в справочнике.

Для обычных резисторов ~ 0,65

Для конденсаторов ~ 0,7

Для проволочных резисторов ~ 0,75

Для кремниевых диодов ~ 0,5

Для германиевых диодов ~ 0,3

Для кремниевых транзисторов ~ 0,8

Для германиевых транзисторов ~ 0,4

Система обозначений некоторых изделий электрической технике.

Полупроводниковые приборы:

Первая буква (цифра) – исходный полупроводниковый материал, на основе которого изготовлен прибор.

Г или 1 – германий (Ge)

К или 2 – кремний (Si)

А или 3 – арсенид галлия (GaAs), или другие соединения галлия

И или 4 – соединения индия

Второй элемент (одна или две буквы) определяет подкласс и признак прибора.

Д – диоды выпрямительные, импульсные, магнитодиоды, термодиоды (1 ÷ 9) ГД511А

Ц – выпрямительные столбы и блоки (1÷4) КЦ201А

В – варикапы (переменные конденсаторы) (1÷2) КВ109А

И – туннельные и обращенные диоды (1÷4) ГИ403А

А – сверхвысокочастотные диоды (1÷8) 1А106Б

С – стабилитроны и стабисторы (1÷9) КС620А

Г – генераторы шума (1÷2) КГ401Б

Л – излучающие полупроводниковые приборы (1÷7) КГ307В

О – оптоэлектронные приборы:

Д – диодные АОД101А

Т – транзисторные АОТ127Б

Р – резисторные

У - тиристорные

У – управляемы тиристоры (триодные, тетродные) (1÷9)КУ202Н

Н – тиристоры неуправляемые (динисторы) КН102Г

Ф – фотоприборы

П – транзистор полевой (1÷9) RG303:

Третий элемент – цифра (первая) – один из основных параметров, характеристик прибора.

Следующие две или три цифры – порядковый номер разработки.

Буква в конце означает группу отбраковки прибора. Далее может быть цифра, обозначающая вариантность корпусного исполнения (М – модернизированный корпус).


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: