Пифагоровы тройки

Изучение свойств натуральных чисел привело пифагорейцев к еще одной «вечной» проблеме теоретической арифметики (теории чисел) — проблеме, ростки которой пробивались задолго до Пифагора в Древнем Египте и Древнем Вавилоне, а общее решение не найдено и поныне. Начнем с задачи, которую в современных терминах можно сформулировать так: решить в натуральных числах неопределенное уравнение

Сегодня эта задача именуется задачей Пифагора, а ее решения — тройки натуральных чисел, удовлетворяющих уравнению (1.2.1), — называются пифагоровыми тройками. В силу очевидной связи теоремы Пифагора с задачей Пифагора последней можно дать геометрическую формулировку: найти все прямоугольные треугольники с целочисленными катетами x, y и целочисленной гипотенузой z.

Рис. 36.

Частные решения задачи Пифагора были известны в глубокой древности. В папирусе времен фараона Аменемхета I (ок. 2000 до н. э.), хранящемся в Египетском музее в Берлине, мы находим прямоугольный треугольник с отношением сторон (). По мнению крупнейшего немецкого историка математики М. Кантора (1829 — 1920), в Древнем Египте существовала особая профессия гарпедонаптов — «натягивателей веревок», которые во время торжественной церемонии закладки храмов и пирамид размечали прямые углы с помощью веревки, имеющей 12 (= 3 + 4 + 5) равноотстоящих узлов. Способ построения прямого угла гарпедонаптами очевиден из рисунка 36.

Надо сказать, что с Кантором категорически не согласен другой знаток древней математики — ван дер Варден, хотя сами пропорции древнеегипетской архитектуры свидетельствуют в пользу Кантора. Как бы то ни было, сегодня прямоугольный треугольник с отношением сторон называется египетским.

Как отмечалось на с. 76, сохранилась глиняная табличка, относящаяся к древневавилонской эпохе и содержащая 15 строк пифагоровых троек. Помимо тривиальной тройки, получаемой из египетской (3, 4, 5) умножением на 15 (45, 60, 75), здесь есть и весьма сложные пифагоровы тройки, такие, как (3367, 3456, 4825) и даже (12709, 13500, 18541)! Нет никаких сомнений, что эти числа были найдены не простым перебором, а по неким единым правилам.

И тем не менее вопрос об общем решении уравнения (1.2.1) в натуральных числах был поставлен и решен только пифагорейцами. Общая постановка какой бы то ни было математической задачи была чужда как древним египтянам, так и древним вавилонянам. Только с Пифагора начинается становление математики как дедуктивной науки, и одним из первых шагов на этом пути было решение задачи о пифагоровых тройках. Первые решения уравнения (1.2.1) античная традиция связывает с именами Пифагора и Платона. Попробуем реконструировать эти решения.

Рис. 37.

Ясно, что уравнение (1.2.1) Пифагор мыслил не в аналитической форме, а в виде квадратного числа , внутри которого нужно было отыскать квадратные числа и . Число естественно было представить в виде квадрата со стороной y на единицу меньше стороны z исходного квадрата, т. е. . Тогда, как легко видеть из рисунка 37 (именно видеть!), для оставшегося квадратного числа должно выполняться равенство . Таким образом, мы приходим к системе линейных уравнений

Складывая и вычитая эти уравнения, находим решение уравнения (1.2.1):

Легко убедиться в том, что полученное решение дает натуральные числа только при нечетных . Таким образом, окончательно имеем

и т. д. Это решение традиция связывает с именем Пифагора.

Заметим, что система (1.2.2) может быть получена и формально из уравнения (1.2.1). В самом деле,

откуда, полагая , приходим к (1.2.2).

Ясно, что решение Пифагора найдено при достаточно жестком ограничении () и содержит далеко не все пифагоровы тройки. Следующим шагом можно положить , тогда , так как только в этом случае будет квадратным числом. Так возникает система

решение которой имеет вид

и т. д. Автором этого решения часто называют Платона.

Легко видеть, что тройки Платона (1.2.4) при нечетных n и после сокращения на 2 дают тройки Пифагора (1.2.3), т. е. решение Платона является более общим. И хотя решение Платона не исчерпывает всего множества решений уравнения (1.2.1), путь получения общего решения теперь просматривается. Найдем это решение.

Прежде всего заметим, что искать следует только примитивные пифагоровы тройки , для которых (символ НОД, как обычно, обозначает наибольший общий делитель), ибо ясно, что если — пифагорова тройка, то для любого натурального также будет пифагоровой тройкой. Теперь может быть доказана основная

Теорема. Если p и q взаимно простые числа разной четности , то все примитивные пифагоровы тройки находятся по формулам


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: