Некоторые типы иррациональных уравнений

Пусть далее – некоторые выражения с неизвестной х,

I тип: уравнение вида

(5.1)

Возведение в -ю степень приводит к равносильному уравнению

Уравнение

(5.2)

после возведения в -ю степень сводится к равносильному уравнению

Уравнение

(5.3)

после возведения в степень 2 n приводит к уравнению-следствию

(5.4)

Найденные корни уравнения (5.4) проверяют подстановкой в уравнение (5.3) и отбирают те из них, которые удовлетворяют уравнению (5.3).

Уравнение

(5.5)

после возведения в степень 2 n сводится к уравнению-следствию

(5.6)

Корни уравнения (5.6) необходимо проверить подстановкой в уравнение (5.5).

II тип: уравнение вида

(5.7)

где

1-й способ. Необходимо возвести уравнение (5.7) в квадрат. В определенных случаях следует один из корней перенести в правую часть уравнения. После упрощения полученное уравнение возводят в квадрат еще раз.

2-й способ. Умножение уравнения (5.7) на сопряженное выражение

Отдельно проверяют, имеет ли решение уравнение h (x) = 0. Затем для h (x) ¹ 0 рассматривают систему

Сложение уравнений этой системы приводит к уравнению вида (5.3).

3-й способ. Замена переменных

и переход к системе уравнений относительно u, v.

Уравнение

(5.8)

где a, b Î R, возведением в куб обеих частей сводится к уравнению

(5.9)

Выражение в скобках (в левой части уравнения (5.9)) заменяют на используя заданное уравнение. В итоге заданное уравнение (5.8) приводится к уравнению-следствию, которое снова возводят в куб.

Полученные таким образом решения необходимо проверить подстановкой в уравнение (5.8).

III тип: уравнения, решаемые заменой переменной.

В результате замены может уменьшиться степень выражений, стоящих под корнями, что приведет к уменьшению степени рационального уравнения после избавления от корней.

Если уравнение имеет вид

(5.10)

где F – некоторое алгебраическое выражение относительно то заменой оно сводится к уравнению

(5.11)

После решения уравнения (5.11) возвращаются к старой переменной и находят решения уравнения (5.10).

IV тип: уравнения, решаемые исходя из арифметического смысла корней с четными показателями. В частности, решение уравнения

(5.12)

где a > 0, b > 0, сводится к решению системы

V тип: уравнения, решаемые функциональными методами и методами, основанными на ограниченности входящих в уравнение функций.

Решение уравнений основывается на следующих утверждениях.

1. Если и для всех , то на множестве X уравнение f(x) = g(x) равносильно системе уравнений

2. Если функции f (x) и g (x) непрерывны и f (x) возрастает, а g (x) убывает для x Î X, то уравнение f (x) = g (x) имеет не больше одного решения на промежутке X. Если один корень подобрать, то других корней нет.

3. Если f (x) – возрастающая функция, то уравнение равносильно уравнению

4. Если f (x) – возрастающая (убывающая) функция, то уравнение равносильно уравнению

Пример 1. Решить уравнение

Решение. Возведем обе части уравнения в квадрат:

Приводим подобные. При этом в левой части уравнения записываем корень, остальные слагаемые – в правой части:

Возводим полученное уравнение в квадрат еще раз:

Решая последнее квадратное уравнение, находим корни которые теперь необходимо проверить. Делаем проверку корней подстановкой в исходное уравнение. Первый корень не подходит.

Приходим к ответу:

Пример 2. Решить уравнение

Решение. Возведем обе части уравнения в куб:

Воспользовавшись исходным уравнением, заменим выражение выражением Получаем:

Решаем совокупность уравнений

В результате замены выражения могут появиться посторонние корни, так как такое преобразование не является равносильным. Поэтому необходимо произвести проверку. Подставляем найденные значения и убеждаемся, что они являются корнями исходного уравнения.

Приходим к ответу:

Пример 3. Решить уравнение

Решение. Возведение уравнения в квадрат приводит к уравнению четвертой степени и громоздкому решению.

Нетрудно заметить, что в данном уравнении можно произвести замену. Но перед этим преобразуем уравнение следующим образом:

Заменив получаем квадратное уравнение

Решая его, находим корни

Возвращаемся к исходной неизвестной:

Первое уравнение решений не имеет, так как его левая часть неотрицательна, а правая – отрицательна. Второе уравнение возводим в квадрат. Получаем:

т. е.

Его корни С помощью проверки убеждаемся, что оба корня подходят, т. е. приходим к ответу:

Пример 4. Решить уравнение

Решение. 1-й способ. Перенесем второй корень вправо:

Возводим обе части в квадрат:

Еще раз возводим в квадрат и получаем квадратное уравнение, решая которое и получаем корни Делаем проверку корней подстановкой в исходное уравнение. Оба корня подходят.

2-й способ. Введем замену тогда Таким образом получили более простое уравнение

т. е.

Возведем его в квадрат:

Возвращаемся к исходной неизвестной:

Возводим обе части уравнения в квадрат:

откуда

При помощи проверки убеждаемся, что оба корня подходят.

3-й способ. Домножим обе части уравнения на выражение, сопряженное левой части исходного уравнения. Получим:

Сложим последнее уравнение с исходным. Получим:

т. е.

Последнее уравнение возводим в квадрат. Получаем квадратное уравнение

Решая его, находим корни

Приходим к ответу:

Пример 5. Решить уравнение

Решение. Пусть Тогда и по условию.

Получили систему

Решаем ее методом подстановки:

Второе уравнение решим отдельно

Получаем корни:

Возвращаемся к системе:

Получаем:

Переходим к заданным неизвестным:

Решая последнюю совокупность, находим корни и С помощью проверки убеждаемся, что оба корня подходят.

Получили ответ:

При решении иррациональных уравнений, как правило, нахождение ОДЗ является бесполезным, так как проверка решений по ОДЗ недостаточна. Но существует ряд примеров, в которых нахождение ОДЗ является тем методом, который приводит к успеху. Покажем это на следующем примере.

Пример 6. Решить уравнение

Решение. Найдем ОДЗ данного уравнения:

Решаем последнюю систему неравенств графически (рис. 5.10).

 
 


Рис. 5.10

Получили, что ОДЗ состоит из единственной точки

Остается подставить значение в уравнение и выяснить, является ли оно решением:

Получили, что – решение.

Пример 7. Решить уравнение

Решение. Используем графический способ. Строим графики функций (рис. 5.11).


Рис. 5.11

Из рисунка видно, что графики пересекаются в единственной точке x = 7. Следовательно, уравнение имеет единственное решение. Проверяем x = 7 подстановкой в заданное уравнение и убеждаемся, что это точное значение решения уравнения.

Получили ответ: x = 7.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: