Химическое равновесие

Интенсивными называются свойства, значение которых не зависит от массы (удельные свойства, температура, давление и т.д.), экстенсивными называются те свойства, значение которых зависит от массы системы (масса, объем, энергия, энтальпия). Химическое превращение – процесс преобразования одних компонентов в другие. При этом происходит изменение чисел молей компонентов.

Изменение экстенсивного свойства при постоянных давлении и температуре за счет протекания химической реакции находится по формуле

, (5.1)

где − парциальное мольное экстенсивное свойство компонента k в реакционной смеси.

После интегрирования (5.1) можно найти интегральное изменение экстенсивного свойства Е. Обычно парциальное мольное свойство вещества k представляют как

, (5.2)

где – стандартное мольное свойство вещества ;

– изменение стандартного мольного свойства за счет образования смеси реагирующих веществ.

Стандартное свойство вещества k характеризует данное вещество в стандартном состоянии. В соответствии с рекомендациями ИЮПАК стандартное состояние вещества выбрано следующим образом: температура вещества в стандартном состоянии равна температуре системы; давление над веществом (или давление газообразного вещества) равно 1 бар (105 Па). Следовательно, понятие стандартного мольного свойства системы никак не связано с какой-либо конкретной температурой. Исторически сложилось так, что для единообразия справочных данных стандартные мольные величины стали определять и табулировать при давлении 1 атм и температуре 298 К. Именно эти условия стали называть стандартными условиями.

Первое слагаемое в уравнении (5.2) зависит только от давления и температуры, а второе слагаемое зависит от концентрации раствора.

Если в качестве стандартного мольного свойства использовать мольное свойство Е компонента в виде чистого вещества (), то второе слагаемое уравнения (5.2) будет соответствовать парциальной мольной функции смешения ()

. (5.3)

Известно, что обычно << , поэтому в уравнении (5.3) часто учитывают только стандартную часть, и подстановка полученного выражения в (5.1) приводит к выражению для расчета изменения экстенсивного свойства за счет протекания химической реакции

, (5.4)

где − стандартное мольное свойство Е реакции.

В справочниках приводятся значения стандартных мольных энтропий чистых веществ при температуре 298 К и давлении 1 атм (). Эти данные позволяют рассчитать стандартное мольное изменение энтропии реакции при температуре 298 К

.

Стандартные мольные энтальпии и функции Гиббса чистых веществ найти невозможно, т.к. нельзя определить абсолютное значение внутренней энергии вещества, а следовательно, и любых других термодинамических функций, включающих внутреннюю энергию. Поэтому для расчета стандартной мольной теплоты реакции обычно прибегают к линейным комбинациям стандартных мольных энтальпий других реакций. Так, например, стандартную мольную энтальпию реакции A + 2B = C находят как комбинацию реакций образования компонентов реакции (химических соединений) из простых веществ

,

где – стандартная мольная теплота реакции образования вещества k.

Справочники содержат данные по при температуре 298 К и давлении 1 атм. Это позволяет рассчитать стандартную мольную теплоту любой реакции при этих условиях:

.

Для расчета стандартных мольных энтропий и энтальпий реакций при любых температурах, отличных от 298 К, нужно располагать данными о зависимости стандартной мольной изобарной теплоемкости реакции от температуры. Эта зависимость в общем виде дается следующим степенным рядом

, (5.5)

где ; ; ; .

Уравнение для расчета стандартного мольного изменения энтальпии в ходе химического превращения называется уравнением Кирхгофа:

. (5.6)

Разделяя переменные и проводя интегрирование, можно получить

. (5.7)

=

.

Расчет стандартной мольной энтропии реакции при произвольной температуре T основан на соотношении:

. (5.8)

. (5.9)

Зная функции и , можно рассчитать значение стандартного мольного изменения энергии Гиббса в ходе химической реакции при любой температуре. Определив стандартную мольную энергию Гиббса в результате протекания химической реакции при различных температурах процесса, можно вычислить величины констант химического равновесия данной реакции при этих же температурах

. (5.10)

Знание константы равновесия реакции позволяет рассчитать состав равновесной системы, т.е. определить максимально возможный, или теоретический, выход желаемого продукта. Для этого необходимо решить уравнение закона действия масс (закона химического равновесия). В предположении идеального поведения газов оно примет вид

, (5.11)

где давление выражено как отношение парциального давления к единице размерности давления, т.е. оно не имеет размерности.

Парциальное давление каждого участника реакции по закону Дальтона равно произведению общего давления и мольной доли компонента Nk

. (5.12)

Если теперь выразить числа молей всех компонентов через начальное количество и глубину реакции, то при известном общем давлении в системе и известной величине константы равновесия будем иметь одно уравнение с одной неизвестной величиной – глубиной реакции:

. (5.13)

Для газовой реакции, если газы близки к идеальным,известно уравнение изотермы химической реакции

, (5.14)

которое позволяет определить возможность протекания процесса в том или ином направлении при известных начальных условиях.

Количественно зависимость константы равновесия от температуры описывается уравнением изобары химической реакции (изобара Вант-Гоффа)

(дифференциальная форма);

(интегральная форма). (5.15)

По этому уравнению, зная константы равновесия при двух разных температурах, можно рассчитать реакции. Зная реакции и константу равновесия при одной температуре, можно рассчитать константу равновесия при другой температуре. А в случае, когда известны величины констант равновесия при нескольких температурах, строят графическую зависимость . Угловой коэффициент получаемой прямой позволит определить величину стандартной мольной энтальпии реакции.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: