Температура и энтропия

Для определения связной энергии нужно измерять энтропию и температуру. Но что это такое?

Мы хотели бы обратить внимание на одну "физическую константу", известную как константа Больцмана. Константа Больцмана k = 1,38054 ґ 10-16 эрг*град-1 фигурирует в физике, как "постоянная" и связывает классическую термодинамику со статистической физикой, как в классическом случае, так и в квантовой механике. Действительно ли это "физическая постоянная"? Нетрудно доказать, что это не так.

Известно, что в школьной физике, да и в учебниках высшей школы, фигурирует формула:

E = pV = RT. (3.8)

Здесь E - энергия, накопленная в форме тепла в газе, p - давление газа, V - объем газа, R - газовая постоянная, T - температура газа.

Вообще говоря, такую зависимость теоретическая физика имеет только для "идеального газа".

Через некоторое время, когда было обнаружено, что теплоемкость газов различна и зависит от числа степеней свободы (которые считались определяемыми числом атомов в молекуле), было принято соглашение относить постоянную R не к одному молю газа, а относить на одну "степень свободы" молекулы - это соглашение превратило "газовую постоянную" в "константу Больцмана". Эта последняя выражается отношением газовой постоянной к числу молекул в грамм-молекуле.

k = R: N = 1,38054 x10-16 эрг*град-1. (3.9)

Некоторое время спустя эту константу начали умножать на множитель, зависящий от сложности молекул, используя представление о степенях свободы. Формула (3.8) приобретает вид:

E = pV = nkNT, (3.10)

где E - энергия газа, p - давление газа, V - объем газа, kN = R - газовая постоянная, n - множитель, учитывающий число степеней свободы и принимающий значения: 3/2, 5/2, 7/2, … Через некоторое время спустя снова пришлось корректировать формулу теплоемкости газа, которая оказалась сама зависящей от температуры. Традиционный математический прием аппроксимации изменяющейся величины - это разложение в ряд по степеням независимой переменной. Возвращаясь снова к газовой постоянной (разложение в степенной ряд лишает эту величину статуса постоянной - теперь она переменная, представляемая суммой ряда) запишем разложение в ряд по степеням температуры:

E = pV = (R0 + R1T + R2T2 + R3T3 + …)T. (3.11)

Мы получили новый вид функции, выражающий ИЗМЕНЕНИЕ теплоемкости газа в зависимости от температуры, то есть установили, что газовая "постоянная" НЕ ЯВЛЯЕТСЯ "ПОСТОЯННОЙ", а что эта величина изменяется с изменением температуры. Формула (3.11) имеет очень громоздкий вид. Для уменьшения числа членов в степенном ряду можно заменить этот ряд некоторой новой буквой, заменяющей этот ряд. Выбираем для этого обозначения букву S. Имеем:

S = R0 + R1T + R2T2 + R3T3 + … (3.12)

Подставляем это значение в формулу (3.11), но не будем забывать, что скрывается за символом S:

E = pV = ST. (3.13)

Сравним формулу (3.13) с формулой (3.8) и зададимся вопросом: "На какой же формуле базируется статистическая физика?"

Ведь нельзя ПОСТУЛИРОВАТЬ в рамках одной и той же теории в качестве ИСТИННЫХ - ДВЕ различные формулы для одной и той же энергии газа.

Физик сразу же поймет, что буква S выбрана не случайно - да, это и есть ЭНТРОПИЯ. Нетрудно убедиться в этом, записывая выражение для "свободной энергии":

F = pV - ST. (3.14)

Дифференцируя это выражение, мы получим хорошо известную формулу изменения свободной энергии:

dF = p dV + V dp - S dT - T dS. (3.15)

Интеграл от этого полного дифференциала возвращает нас к формулам (3.14) и (3.13). Для начала заметим, что для равновесных систем свободная энергия равна нулю. С другой стороны, обращаясь к формуле (3.11) и к формуле (3.13), зададимся не традиционным вопросом: "Что такое ЭНТРОПИЯ?", а вопросом: "Что мы измеряем, когда измеряем температуру?" Ведь измерение температуры задавалось правилом, что при постоянном давлении между температурой и объемом термометрического тела существует ЛИНЕЙНАЯ ЗАВИСИМОСТЬ, которая и выражается ГАЗОВОЙ ПОСТОЯННОЙ. ЭТО означает, что приращение энергии газа выражается через приращение температуры.

Небольшое размышление показывает, что исторически термин температура связан с изменением объема термометрического тела и ПРЕДПОЛОЖЕНИЕМ О ЛИНЕЙНОЙ ЗАВИСИМОСТИ ЭНЕРГИИ ТЕЛА ОТ ЕГО ОБЪЕМА. В этом случае в формуле (3.8) приращение энергии можно выразить через приращение объема, то есть:

dE = R dV. (3.16)

Здесь мы показываем, что измеряемой физической величиной, которую измеряла классическая физика и называла ТЕМПЕРАТУРОЙ, была величина изменения ОБЪЕМА термометрического тела, что мы делаем и в наши дни при использовании термометров расширения.

Обратимся к формуле (3.13) - здесь та же ситуация, только вместо буквы R стоит буква S. Но физический смысл остается без изменения - эта переменная величина связывает между собою энергию и объем термометрического тела. Имеем:

dE = S dV. (3.17)

При обсуждении парадоксального положения, связанного с использованием в основаниях статистической физики ДВУХ ВЗАИМОИСКЛЮЧАЮЩИХ ФОРМУЛ, приходилось слышать, что величина S существенно ПОЛОЖИТЕЛЬНА. И это положение не выдерживает критики: достаточно заполнить термометр расширения водой и нагревать от 0 до 40° по Цельсию, чтобы получить положительную величину прироста энергии (при уменьшающемся объеме) необходимо считать значение S отрицательным.

Еще в 1961 г. в одной из своих публикаций были показаны абсолютные отрицательные температуры при фазовых переходах, в окислительно-восстановительном потенциале и при фотохимических реакциях.

Вообще, абсолютные отрицательные температуры появляются там, где возможно устойчивое существование микрочастиц на верхнем и нижнем энергетических уровнях - например, фазовый переход и окислительно-восстановительный потенциал (железо-3 - более высокий энергетический уровень, чем железо-2). Фотосинтез: продукты фотосинтеза занимают более высокий энергетический уровень, чем исходные вещества.

Известна работа Э.Шредингера: "Что такое жизнь с точки зрения физики?". В ней Шредингер делает заявление, что растение питается "отрицательной энтропией". Проверка этого утверждения прямым расчетом показала, что Шредингер прав тогда и только тогда, когда температура листа растения имеет абсолютное отрицательное значение. Таким образом, "отрицательная энтропия" имеет ту же природу, что и абсолютные отрицательные температуры.

Вообще говоря, этот вывод хорошо объясняет, почему С.Подолинский, Э.Бауэр, В.Вернадский, а впоследствии и многие другие крупные ученые, для определения физических основ явлений жизни не стали обращаться к понятию ЭНТРОПИЯ, а использовали понятие "свободная энергия". Мы вновь возвращаемся к этому понятию и хотим показать связь свободной энергии с другими видами энергии.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: