Вектор электрического смещения, восприимчивость и диэлектрическая проницаемость. Теорема Гаусса для векторов P и D

Напряженность электростатического поля, зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Е, переходя через границу диэлектриков, претерпевает скачко­образное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризо­вать поле еще вектором электрического смещения, который для электрически изотроп­ной среды, по определению, равен . Также вектор электрического смещения можно выразить как использую формулы диэлектрической проницаемости и восприимчивости.

где æ- диэлектрическая восприимчивость, характерезующая свойства диэлектриков(безразмерная величина). И другая безразмерная величина это диэлектрическая проницаемость среды (ε):

ε=æ+1. ε показывает, во сколько раз поле ослабляется диэлект­риком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле.

Единица электрического смещения — кулон на метр в квадрате (Кл/м2). Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле свя­занных зарядов. Результирующее поле в диэлектрике описывается вектором напряжен­ности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, воз­никающие в диэлектрике, могут вызвать, однако, перераспределение свободных заря­дов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности. Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора Dтолько на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверх­ность

где Dn — проекция вектора D на нормаль n к площадке d S.

Теорема Гаусса для электростатического поля в диэлектрике:

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума Dn = e 0 En (e =1), тогда поток вектора напряженности Е сквозь произ­вольную замкнутую поверхность равен

где — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: