Уравнение 25–1

V (VE) = (dP¸Raw) = (PA – PB) ¸ Raw

Raw = DP¸VE

где: DP — разность давлений, осуществляющая конвекцию (разность внутрилёгочного [альвеолярного — PA] и наружного барометрического [PB] давлений); VE — объём вдыхаемого воздуха (л/(c), Raw — преодолеваемое сопротивление (его величина прямо пропорциональна вязкости вдыхаемого воздуха [ h ], длине пути [ l ] и обратно пропорционально радиусу трубки [ r ] в четвёртой степени, т.е. Raw = 8hl/r4. Так, удвоение l удваивает R, но уменьшение r увеличивает R в 16 раз). Для характеристики турбулентного и промежуточного потоков предложены более сложные формулы. На практике потоки воздуха измеряют (пневмотахометрия, флоуметрия) при помощи пневмотахометра (флоуметр).

Рис. 25–2. ХАРАКТЕР ПОТОКА В ВОЗДУХОНОСНЫХ ПУТЯХ. Ламинарный поток перемещается спокойно, скорость движения воздуха небольшая, наблюдается в мелких воздухоносных путях. Турбулентность потока возникает при значительной скорости его перемещения (например, в крупных воздухоносных путях) вследствие трения о стенки трубок, в местах изменения конфигурации трубок (сужения, перегибы, разветвления). Промежуточный тип движения наблюдается в крупных и средних бронхах, особенно в местах их разветвлений и сужений.

Ú Суммарная площадь поперечного сечения воздухоносных путей увеличивается по мере уменьшения калибра трубок. В воздухоносных путях трубки разделяются дихотомически, от трахеи (единственная трубка) до альвеолярных ходов (см. рис. 25–1, В) и альвеол (суммарное количество около 350 млн) начитывают 23 последовательных поколения трубок. Так, на уровне поколения 0 (трахея) суммарная площадь сечения около 2,5 см2, на уровне терминальных бронхиол (поколение 16) — 180 см2, респираторных бронхиол (от 18–го поколения) — около 1000 см2 и далее >10 000 см2. Соответственно резко уменьшается скорость потока. Бронхиолы (трубки без хряща в их стенке) начинаются от 11-го поколения. Начиная с 17-го поколения появляются альвеолы (респираторный отдел лёгкого). Суммарный объём трубок от трахеи до терминальных бронхиол включительно (т.е. трубок, не принимающих участие в газообмене, проводящие воздухоносные пути) составляет анатомически мёртвое пространство (около 150 мл у мужчин, более 125 у женщин). Суммарный объём всех трубок вместе с альвеолами составляет величину около 5800 мл (общая ёмкость лёгких).

¨ Упругое сопротивление определяется эластичностью органов и тканей (в первую очередь эластическими структурами в составе лёгкого, вмонтированными практически во все воздухоносные пути, их особенно много на уровне альвеол) и силами поверхностного натяжения на границе раздела фаз (преимущественно на покрытой сурфактантом поверхности альвеол). На долю эластических структур приходится примерно 40%, на долю поверхностного натяжения около 60% от всего упругого сопротивления.

Ä Значения сопротивления

Ú В состоянии покоя у взрослого человека Raw варьирует от 0,6 до 2,3 см водн.ст. (среднее — 1,5 см водн.ст., при этом на глотку и гортань приходится 0,6 см водн.ст., столько же на воздухоносные пути диаметром >2 мм, а диаметром <2 мм всего 0,3 см водн.ст.).

Ú При хронических обструктивных заболеваниях лёгкого Raw увеличивается до 5,0 см водн.ст. и даже до 10,0 см водн.ст. (преимущественно за счёт воздухоносных путей диаметром <2 мм).

Ú Поскольку объём вдыхаемого воздуха (VE) обратно пропорционален Raw (уравнение 25–1), даже двукратное увеличение Raw вдвое уменьшает величину VE, требуя значительных мышечных усилий для поддержания лёгочной вентиляции.

Ú Увеличение значения Raw происходит в результате сокращения ГМК воздухоносных путей, что наблюдается при увеличении так называемого тонуса блуждающего нерва (освобождающийся из окончаний парасимпатических нервов ацетилхолин взаимодействует с мускариновыми ацетилхолиновыми рецепторами на поверхности ГМК) и при освобождении гистамина из тучных клеток воздухоносных путей (типичная для приступа бронхиальной астмы ситуация).

Ú Уменьшение значения Raw происходит в результате расслабления ГМК воздухоносных путей, что наблюдается под влиянием адреналина и других агонистов b 2 –адренергических рецепторов на поверхности ГМК.

à Давление в дыхательном аппарате. При осуществлении дыхательного цикла в альвеолах и во внутриплевральном пространстве лёгких изменяется давление. Наибольшее значение как для осуществления вдоха и выдоха, так и для оценки параметров функции внешнего дыхания имеют альвеолярное (PA), внутриплевральное (Ppl) и транспульмональное (PTP) давление (Рис. 25–3)

Рис. 25–3. Направления сил в течение дыхательного цикла.

¨ Альвеолярное давление (PA) — давление воздуха внутри лёгочных альвеол. PA — динамический (изменяющийся) параметр, характеризующий потоки воздуха, зависящий от сопротивления в лёгком и напрямую не контролируемый сознанием.

Ä Дыхательная пауза. В состоянии покоя (вне вдоха и выдоха) давление во всех частях дыхательной системы и во всех альвеолах равно атмосферному (PB), то есть PA составляет 0 см водн.ст.; другими словами, движения воздуха нет.

Ä Вдох. Во время вдоха PA уменьшается до –1 см водн.ст., и поток воздуха течёт к альвеолам.

Ä Выдох. На выдохе PA увеличено до +1 см водн.ст., поток воздуха течёт от альвеол во внешнюю среду.

¨ Внутриплевральное давление (Ppl) — давление жидкости в узком пространстве между висцеральной и париетальной плеврой. Значение PPI контролируется мозгом посредством сокращения дыхательных мышц. Ppl имеет 2 компонента — статический (-PTP) и динамический (PA). Ppl создаётся направленной внутрь эластической тягой лёгких и уравновешивающей её эластической тягой грудной клетки, направленной наружу. Ppl в покое составляет –4–5 см водн.ст. (0,3–0,5 кПа). Во время вдоха сила тяги грудной клетки наружу увеличивает отрицательное Ppl, доводя его до –7,5 см вод. ст.

¨ Транспульмональное давление (PTP) — разность между альвеолярным и внутриплевральным давлением (PA — Ppl). PTP — статический параметр, не влияющий на потоки воздуха и прямо не контролируемый мозгом. Нормально РTP составляет на выдохе –3–4 см водн.ст., на вдохе –9–10 см водн.ст., при глубоком вдохе до –20 см водн.ст.

· Респираторный отдел (см. рис. 25–1, Б–Г): здесь путём диффузии осуществляется перенос газов к респираторной поверхности альвеол и газообмен через аэрогематический барьер (т.е. между полостью альвеол и кровью, находящейся в кровеносных капиллярах межальвеолярных перегородок). Газообмен респираторного отдела в существенной степени зависит от параметров кровотока через капилляры межальвеолярных перегородок, т.е. от их перфузии кровью. Перфузия респираторного отдела (Q) — важная характеристика функции внешнего дыхания.

à Воздухоносные пути респираторного отдела (респираторные бронхиолы ® альвеолярные ходы ® преддверие ® альвеолярные мешочки ® полость альвеол) соответствуют поколениям трубок 17–23 с очень небольшой скоростью потока в них. Другими словами, перемещение газов в них происходит не путём конвекции (как в воздухоносных путях более крупного калибра), а путём диффузии.

à Альвеолы — полусферические структуры диаметром от 70 мкм до 300 мкм. Суммарная площадь всех альвеол (около 300 млн) от 50 м2 до 100 м2, их максимальный объём от 5 л до 6 л, что составляет не менее 97% объёма лёгких.

à Аэрогематический барьер. Между полостью альвеолы и просветом капилляра происходит газообмен. Структуры, образующие минимальной толщины аэрогематический барьер: альвеолярные клетки I типа (0,2 мкм), общая базальная мембрана (0,1 мкм), уплощённая часть эндотелиальной клетки капилляра (0,2 мкм). В сумме это составляет 0,5 мкм. Реально в состав барьера входят выстилающая альвеолярную поверхность плёнка сурфактанта и межклеточное вещество (интерстиций) между базальными мембранами альвеолоцитов и капилляров, что увеличивает путь газообмена до нескольких микрометров.

à Сурфактант — эмульсия фосфолипидов, белков и углеводов; 80% составляют глицерофосфолипиды, 10% — холестерол и 10% — белки. Общее количество сурфактанта в лёгких крайне невелико. На 1 м2 альвеолярной поверхности приходится около 50 мм3 сурфактанта. Толщина его плёнки составляет 3% общей толщины аэрогематического барьера. Эмульсия образует на поверхности альвеол мономолекулярный слой. Главный поверхностно-активный компонент сурфактанта — дипальмитоилфосфатидилхолин — ненасыщенный фосфолипид, составляющий более 50% фосфолипидов сурфактанта. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз. Среди белков сурфактанта выделяют SP-A, SP-B, SP-C, SP-D. Белки SP-B, SP-C и глицерофосфолипиды сурфактанта ответственны за уменьшение поверхностного натяжения на границе воздух–жидкость. Белки SP-A и SP-D участвуют в местных иммунных реакциях, опосредуя фагоцитоз. Рецепторы SP-A имеются в альвеолоцитах II типа и в макрофагах.

¨ Поверхностное натяжение (T) окружённого водой пузырька газа радиусом r стремится уменьшить объём газа в пузырьке и увеличить его давление (P). Состояние равновесия между действующими силами описывает уравнение Лапласа:


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: