Особенности расчета тепловых схем водогрейных котельных

При расчете необходимо помнить, что расход воды через котел во всех режимах должен быть постоянным. Отпуск тепла можно изменять только количеством работающих котлов.

tх = 5 0С – зимой; tх = 15 0С – летом.

Температура воды зависит от схемы обработки воды. При наличии предочистки:

30 0С – при коагуляции;

40 0С – при коагуляции с известкованием.

Без предочистки: 25…35 0С.

В общем случае , лучше (0…2) 0С.


Если деаэратор работает с обогревом, то:

Если деаэратор работает без обогрева, то:


, где tнас – по давлению в деаэраторе (0,3 атм).

Температура - температура на входе в котел. Зависит от вида сжигаемого топлива. При сжигании газа или низкосернистого мазута – не ниже 70 0С. При сжигании высокосернистого мазута - не ниже 110 0С. При сжигании твердых топлив первоначально определяют температуру точки росы и температуру на входе в котел принимают не ниже:


tгр = 60…70 0С. При работе на открытые системы лучше принимать tгр = 60 0С.

.Рис.4.1. Расчетная тепловая схема водогрейной котельной

Порядок расчета:

1) Определяется количество работающих (для максимально зимнего режима – установленных) котлов. Для максимально зимнего режима минимально допустимое количество установленных котлов – 2, оптимальное – 2. Исходя из этого оценивается единичная производительность котла:



По найденым значениям и выбирается котел с производительностью из номенклатурного ряда. По выбранной производительности котла Q определяется количество установленных котлов:


n’ округляется до ближайшего большего целого числа.

Для всех остальных режимов определяется количество работающих котлов по уже выбранной единичной мощности.

2) Определяется температура воды на выходе из котла.


G – расход воды через котел по технической характеристике выбранного котла.

Если для какого-либо режима (обычно для максимально зимнего) получится , то принимают и пересчитывают :


2) Определяются расходы греющей среды деаэратора, и подогревателей сырой и химочи-щенной воды.

- для деаэратора:


Отсюда определяют Gд.

- действительный расход воды через деаэратор.

Gвып = 0,002 Gподп

- для подогревателя химочищенной воды:


,

где r – теплота парообразования по давлению в деаэраторе;

- коэффициент сохранения тепла (0,98…0,99).

Отсюда определяют GП2.

- для подогревателя сырой воды:


где - расход на собственные нужды ХВО.

3) Расчет температуры воды после сетевых насосов (по тепловому балансу точки 1).

4) Расчет количества перепускаемой воды (по тепловому балансу точки 2).

5) Расчет узла рециркуляции. По уравнению материального баланса узла 3 определяется расход рециркулируемой воды, а из теплового баланса этого же узла – температура воды на входе в котел. Если найденное значение не совпадает с ранее принятым значением (смотри п.2), то следует искать ошибку в расчетах.


Допустимое расхождение при определении не более 3%.

a. Расчет тепловой схемы паровой котельной

3. Расход пара на деаэратор подпиточной воды

- энтальпия пара на выходе из котла; iк – энтальпия конденсата. iк =с(tнас -10…15 0С).

tнас – температура конденсата при давлении греющего пара. При наличии подрегулировки перед подогревателем tнас определяется при давлении 2…2.5 атм., без регулировки – 6 атм.

=0.002 Gподп.

- если нет охладителя деаэрированной воды; - температура насыщения по давлению в деаэраторе; =65 0С для работы на открытые системы (с охлаждением деаэрированной воды) и 60…70 0С при работе на закрытые системы. Из уравнения теплового баланса деаэратора

Рис.4.2. Расчетная схема паровой котельной

tд2. Действительный расход пара есть

.

4. Расчет расхода пара на подогреватель подпиточной воды перед деаэратором Д-2.

5. Расчет расхода пара на подогрев сетевой воды.

Отсюда находят Dпсв.

6. Оценивают паропроизводительность котельной.

.

- расходы пара на подогрев сырой, химически очищенной воды перед питательным деаэратором и питательным деаэратором.

7. Оценивается величина продувки котла

. Здесь Sкв – солесодержание котловой воды, зависит от типа котла и сепарационных устройств в барабане. Для промышленных котлов Sкв =3000…7000 мг/л;

Sпв – солесодержание питательной воды.

,

- солесодержание воды после химводоочистки; - солесодержание конденсата,

=4…8 мг/л; a – доля химически очищенной воды в питательной воде котла. Расход продувки есть .

8. Расчет расширителя с сепаратором продувочной воды.

- энтальпия воды при давлении в сепараторе. Давление в сепараторе зависит от схемы использования потоков после сепаратора. В котельных промышленного назначения при использовании пара после сепаратора в питательном деаэраторе, давление в сепараторе 2…4 атм.

Рис.4.3. Схема сепаратора

i сп = i c + rx, x =0.98...0.99. Из уравнений материального и теплового балансов находят D с и G с.

1. Расчет расхода пара на подогрев сырой воды.

Охладитель сепарированной воды может быть установлен на линии химически очищенной воды перед питательным деаэратором. - температуры сырой воды до и после подогревателей. 40...50 0C. Из уравнения теплового баланса определяется D п2.

Рис.4.4. Схема подогрева исходной воды

исх.воды= G подп. + D пот + G с + G нев.к + G хво.сн.

G нев.к - невозврат конденсата от технологического потребителя;

G хво.сн. =(20…30)% от мощности водоподготовки (G подп. + D пот + G с + G нев.к).

1. Расчет расхода пара на подогрев химически очищенной воды выполняется, если перед питательным деаэратором есть пароводяной теплообменник. В противном случае рассчитывается температура воды перед питательным деаэратором.

90…95 0С если есть пароводяной теплообменник. Если теплообменника нет, то эта температура рассчитывается из уравнения теплового баланса.

Рис.4.5. Схема расчета деаэратора

Уравнение теплового баланса

.

Если отсутствует подогреватель П3, то расход пара на него D п3=0, и из уравнения теплового баланса находят . Если теплообменник П3 есть, то =90…95 0С. Из уравнения находят D п2.

1. Определение расхода пара на деаэратор питательной воды.

Расход пара D д1 определяется из уравнения материального баланса деаэратора. Действительный расход пара определяется с учетом выпара.

.

2. Уточняется паропроизводительность котельной и сравнивается с предварительно заданной величиной.

D к= D техн + D псв + D п1 + D п2 + D п3 .

Если расхождение больше 3%, то расчет повторяют, начиная с п.5.

Доля химически очищенной воды в питательной воде

.

При первом приближении

. В последующих приближениях a принимается по результату предыдущего приближения.

a. Схемы отпуска тепла от ТЭЦ.

Особенности отпуска тепла от турбин типа Р

При использовании этих турбин вся электроэнергия вырабатывается в теплофикационном режиме, но так как существует жесткая связь между отпусками тепла и выработкой электроэнергии, то станции только турбинами типа Р не оснащаются.

1.Пар после турбин с давлением 1.2…4 атм. используется для подогрева сетевой воды. В этом случае сетевую воду можно подогреть до температуры 115…120 0С, т.е. турбины рассчитываются на покрытие основной нагрузки, а пиковая нагрузка покрывается пиковыми водогрейными котлами. Но лучше покрывать паром из турбин типа Р только нагрузку ГВС.

2.Пар используется для покрытия технологической нагрузки низкого давления и базисной части коммунально-бытовой нагрузки, Р=4…9 атм.

2.Покрывается технологическая нагрузка повышенного давления Р=10…15 атм.

Особенности схем отпуска тепла от турбин с отборами.

Максимальное давление в теплофикационном отборе определяется по температуре сетевой воды, соответствующей средней за отопительный период температуре наружного воздуха. С переходом на повышенный температурный график должно расти давление в теплофикационном отборе, а с ростом давления снижается выработка электроэнергии в теплофикационном режиме. Чтобы не ухудшать экономические показатели теплофикационных турбин, теплофикационные отборы делают сдвоенными с одним регулятором давления. Пределы регулирования давления в нижнем теплофикационном отборе 0.6…2.0 атм., в верхнем – 0.6…2.5, 2.0 атм. Давление регулируется либо в нижнем отборе, либо в верхнем. Если регулирование происходит в верхнем отборе, то нижний становится нерегулируемым с Р=0.85 атм. Теплофикационные турбины имеют в конденсаторах встроенные конденсационные пучки в которых можно подогревать сетевую воду не меняя давления в конденсаторе. При работе встроенных конденсационных пучков можно получить до 10 Гкал/ч тепла. Сегодня во встроенных пучках можно греть сырую воду перед химводоочисткой в открытых системах теплоснабжения.

Схема подогрева сетевой воды на станциях как правило двухступенчатая. Первая ступень – основной подогреватель (бойлер), в котором сетевая вода греется паром теплофикационного отбора. Пиковая часть нагрузки может обеспечиваться работой пиковых водогрейных котлов, либо паром производственного отбора.

Для деаэрации подпиточной воды могут использоваться вакуумные или атмосферные деаэраторы. Обогрев деаэратора осуществляется как правило паром регулируемого или нерегулируемого отбора.

Перевод турбин в режим ухудшенного вакуума.

В этом случае конденсатор используется для подогрева сетевой воды. Конденсатор нормально работает при давлении < 0.8…0.9 ата. Поэтому сетевую воду можно нагреть максимум до 80-90 0С. Схема нагрева сетевой воды становится трехступенчатой – конденсатор-основной подогреватель-пиковый котел. Так как допустимое давление по воде в конденсаторе не более 2…2.5 атм., то конденсатор включают в схему подогрева до сетевых насосов.

Рис.4.6. Схема отпуска тепла от ТЭЦ

Режимы работы ступеней нагрева ТЭЦ

Одной из характеристик работы ТЭЦ является коэффициент теплофикации a - отношение количества тепла из отборов турбины к общему количеству тепла, отпускаемого от ТЭЦ.

, aт=0.4…0.6, aп = 0.8…1.0.

Различают следующие режимы работы ступеней нагрева сетевой воды.

1. Режим с использованием максимальных параметров в отборе. Пиковая нагрузка покрывается паром производственного отбора.

2. Режим с постоянным перепадом температур по сетевой воде. Пиковая нагрузка обеспечивается работой водяного котла.

3. Режим, сочетающий особенности первых двух (тоже с пиковым водяным котлом).

Рис.4.7.

Технико-экономическим расчетом определяется оптимальное значение a. По известному определяется максимально возможная температура сетевой воды на выходе из основного подогревателя (tотб). =0.2…0.3 ата.

, где - потери по пути от турбины до подогревателя.

По определяют . Расчетное значение , Dtнед =10…15 0С. По на графике температур проводят горизонтальную линию. Сплошная линия t 1 есть график температуры на выходе из основного подогревателя. При t н > t нa отпуск тепла обеспечивается только работой основного подогревателя. При t н < t нa в работу

Рис.4.8.

включается и пиковый подогреватель. соответствует максимальному отбору пара в отборе Т при отключенном отборе П. С введением в работу пикового подогревателя расход пара в отборе Т уменьшается до номинального.

Рассмотрим случай, когда установлен пиковый водяной котел.

Рис.4.9.

Технико-экономическим расчетом определяется оптимальное значение a и . При t н > t нa работает только основной подогреватель.

При t н < t нa включаются основной подогреватель и пиковый водяной котел. При включении в работу водяного котла загрузка теплофикационного отбора не меняется, что можно обеспечить при постоянном расходе в сети выдерживая постоянный перепад давления по сетевой воде на основном подогревателе.  

Рис.4.10.

При работе по режиму 2 < , определенному в п.1. При работе по режиму 3 определяются . По найденному находят t нa и .

ВОДОПОДГОТОВКА

Надежность работы поверхностей нагрева котельных агрегатов и систем теплоснабжения зависит от качества питательной и подпиточной воды. Показателями качества воды являются прозрачность, т.е. содержание взвешенных веществ, удаляемых при механическом фильтровании; сухой остаток – содержание минеральных и органических примесей после выпаривания; жесткость – содержание солей кальция и магния; щелочность – содержание в воде анионов (бикарбонатов), (карбонатов), (гидратов); содержание агрессивных газов (О2 и СО2).

Основной задачей подготовки воды является борьба с коррозией и накипью. Требования к качеству воды в паровых и водогрейных котельных различные, т.к. в паровых котельных вода испаряется, а в водогрейных- только нагревается.

Наиболее важным показателем качества воды является ее жесткость. Различают жесткость постоянную (некарбонатную), обусловленную наличием в воде хлоридов, сульфатов и других некарбонатных солей кальция и магния, и временную (карбонатную), обусловленную присутствием в воде бикарбонатов кальция и магния .

Общая жесткость равна сумме концентраций катионов кальция и магния

ЖоСа + ЖMg мг-экв/кг. Для пересчета концентраций кальция и магния, выраженных в мг/кг, в мг-экв/кг их делят на эквивалентные массы этих катионов

, .

Общей щелочностью воды Що называется выраженная в мг-экв/кг суммарная концентрация содержащихся в воде анионов .

Сухим остатком, или солесодержанием называют количество солей, оставшееся после выпаривания воды, мг/кг.

Нормы качества питательной воды для паровых котлов зависит от типа котла и вида топлива. Общая щелочность и сухой остаток питательной воды не нормируются, а обуславливаются выбранными методами обработки воды. Щелочность питательной воды определяется по формуле , где -доля химически обработанной воды; Щ о.в. – щелочность очищенной воды; Щ к – щелочность конденсата. При отсутствии сведений о качестве конденсата можно принимать 0.05 мг-экв/кг. Сухой остаток питательной воды определяется по формуле . Для конденсата можно принимать S к=5 мг/кг.

Источниками водоснабжения для котельных могут служить поверхностные воды рек, озер и искусственных водохранилищ, а также подземные воды из артезианских скважин. Поверхностные воды всегда содержат растворенные вещества и нерастворенные примеси. Подземные воды прозрачны, но солей содержат больше. Чаще всего для водоснабжения используется воды рек и озер. Выбор схемы очистки производится согласно таблицы.

Качество исходной воды Метод обработки Основное оборудование
Взвешенных веществ до 50 мг/кг, окисляемость менее 15 мг/кг О2 Фильтрование (удаление взвешенных веществ) Механические фильтры с загрузкой антрацитом или кварцем. Высота слоя <=1 м, d=0.5-1.2 мм
Взвешенных веществ до 100 мг/кг Фильтрование (удаление взвешенных веществ) Механические фильтры с двухслойной загрузкой. Первый слой – кварцевый песок d=0.5-1.2 мм, высота слоя 0.7-0.8 м. Второй слой – дробленый антрацит d=0.8-1.8 мм, высота слоя 0.7-0.5 м
Взвешенных веществ более 100 мг/кг, окисляемость больше 15 мг/кг О2, жесткость < 2 мг-экв/кг Коагуляция в осветлительном фильтре и фильтрование в механических фильтрах. Уменьшается количество взвешенных веществ и снижается окисляемость Осветление с последующим фильтрованием
Взвешенных веществ более 100 мг/кг, окисляемость более 15 мг/кг О2, жесткость более 2 мг-экв/кг Известкование с коагуляцией с последующим фильтрованием, снижается окисляемость, частично снижается щелочность Осветление с последующим фильтрованием

Осветленная исходная вода или вода из хозяйственно-питьевого трубопровода обрабатывается в ионно-обменных фильтрах, что позволяет уменьшить щелочность и жесткость. При этом возможны следующие методы обработки: Na-катионирование, Na-NH4-катионирование, Н-катионирование с последующим удалением углекислоты (декарбонизацией), NaCl-ионирование, известкование с коагуляцией.

1. Na-катионирование

Паровые котлы требуют воду с Жо не более 0.01 мг-экв/кг, поэтому Na-катионирование как правило двухступенчатое.

2. Н-катионирование с "голодной" регенерацией фильтров применяется для снижения щелочности, углекислоты, умягчения, частичного снижения содержания железа.

3. Параллельное Н-Na – катионирование, декарбонизация.

По этой схеме вода двумя параллельными потоками направляется на Н- и Na – катионитовые фильтры. Затем оба потока направляются на декарбонизацию для удаления свободной углекислоты и на Na-катионитовый фильтр второй ступени. Такая схема применяется для получения умягченной воды с щелочностью не более 0.35 мг-экв/кг и когда суммарное содержание сульфатных и хлоридных ионов в исходной воде не превышает 5-7 мг-экв/кг, карбонатная жесткость исходной воды составляет более 50 % общей жесткости.

4. Параллельное или совместное NH4-Na – катионирование. Уменьшается жесткость, щелочность и солесодержание котловой воды.

5. Na-Cl – катионирование. Одновременно с умягчением снижается щелочность воды. Вода после 1-й ступени Na-катионирования проходит через фильтр с анионитом и катионитом. Этим методом можно получить жесткость до 0.01 мг-экв/кг и щелочность до 0.2-0.6 мг-экв/кг.

Метод известкования с коагуляцией применяется для обработки вод поверхностных источников. Он относится к методам осаждения. При этом удаляются связанная и свободная углекислота, снижается содержание железа, сухого остатка, щелочности, органических веществ. Известкование основано на связывании ионов в малорастворимые соединения. Они осаждаются в виде шлама. Перед известкованием воду нужно нагревать до 40 0С.

В случае высокоминерализованной исходной воды и больших потерях конденсата можно пользоваться не химической, а термической обработкой воды в испарителях. При использовании артезианских вод перед ионнообменными фильтрами воду нужно очищать от железа. Как правило, двухвалентное железо содержится в виде Fe(HCO3)2. Трехвалентное железо Fe 3+ содержится в коллоидном состоянии в виде Fe(OH) 3. Если содержание до 10 мг/кг, то окисление до Fe 3+ производится путем подачи сжатого воздуха в трубопровод исходной воды. Затем воду фильтруют в напорных фильтрах. Если больше 10 мг/кг, то для подачи сжатого воздуха используются специальные устройства.

Правильность выбора схемы водоподготовки проверяется по трем параметрам – величина продувки котла, относительная щелочность котловой воды, содержание углекислоты в паре. Несмотря на подготовку питательной воды, для поддержания концентрации солей на нужном уровне воду нужно частично или постоянно обновлять. Эта операция называется непрерывной или периодической продувкой. Непрерывная продувка производится из участков котла, где ожидается максимальная концентрация растворенных веществ. Периодическая продувка - из мест скопления шлама. Продувка котла по сухому остатку определяется по формуле

, где

П к – суммарные потери пара и конденсата в долях паропроизводительности котельной; S x – сухой остаток химически очищенной воды, мг/кг; S к.в. – сухой остаток котловой воды, мг/кг принимают по паспортным или эксплуатационным данным. Для котлов с давлением < 14 ата допустимая продувка не более 10 %, солесодержание не более 500 мг/кг. При давлении в 40 ата продувка не более 5 %, солесодержание чистой воды не более 250 мг/кг.

Допустимое содержание углекислоты в паре не более 20 мг/кг. Концентрация СО2 рассчитывается для безбарботажных деаэраторов или при отсутствии деаэрации воды по формуле

,

для барботажных деаэраторов по формуле

,

где - доля химически очищенной воды в питательной воде; - доля разложения Na 2 CO 2 в котле (при давлении до 14 ата – 0.72); 1 – доля разложения NaHCO 3 в котле, равная 0.4.

Относительная щелочность воды во избежание межкристаллитной коррозии должна быть не более 20 % при наличии заклепочных соединений и не более 50 % при наличии вальцовочных соединений.

, Щ для паровых котлов не более 20 %. При отклонении одного из указанных параметров от допустимого, схему водоподготовки следует пересмотреть с целью снижения данного параметра.

Использование конденсата.

Производственный конденсат, как правило, содержит загрязнения в виде механических примесей, соединений железа и меди, кислорода, углекислого газа, аммиака и др. Если загрязнений не более: взвешенных веществ (300 мг/кг), соединений железа 70 мг/кг, масел 20 мг/кг, смол 2 мг/кг то рекомендуется обработку конденсата осуществить в котельной. Для очистки конденсата фильтрацией применяются активированный уголь, сульфоуголь, антрацит, целлюлоза и др. Обработка в Na-катионитовых фильтрах – удаление аммиака и уменьшение общей жесткости; осветление в фильтрах – уменьшение содержания взвешенных веществ, соединений железа и масла.

При содержании железа от 50 до 70 мг/кг, масел от 15 до 20 мг/кг и смол не более 2 мг/кг необходимо предусмотреть отстаивание конденсата с последующим осветлением.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: