II. Способ перемены двух плоскостей проекций

Этот метод предусматривает для решения метрических задач последовательное изменение положения плоскости проекций V на и плоскости проекции Н на , причем при каждом изменении одной из этих плоскостей рассматриваемые геометрические объекты проектируются на две взаимно-перпендикулярные плоскости.

При решении задач, когда необходимо использовать метод перемены двух плоскостей проекций, условие задания обычно даётся на ортогональном чертеже в системе плоскостей проекций представленной осью .

Основываясь на необходимости выполнения задания, мы связываем на ортогональном чертеже заданную систему с новой –– , которая представлена осью , где плоскость проекций Н остаётся в прежнем состоянии, а плоскость V занимает новое положение , оставаясь при этом перпендикулярной плоскости Н.

И, наконец, сообразуясь с требованиями задачи, обе эти системы связываем с системой плоскостей , представленной на нашем ортогональном чертеже осью , где плоскость проекций остается неизменной, а плоскость Н, занимая новое положение , остаётся перпендикулярной плоскости .

На ортогональном чертеже рисунка 84 показана точка А в системе : . При

переходе к системе , обозначенной осью , положение проекции в плоскости Н остается неизменной, а проекция на новую плоскость переносится известным образом в точку . Проекции точки А в системе , обозначенной осью : ; здесь

Рис. 84.

позиция проекции неизменна, а проекция на новую плоскость известным методом переносится в точку (см. рис. 84). Рассмотрим на конкретном примере решение задачи, пользуясь переменой двух плоскостей проекций.

Задача 1. Определить расстояние от точки до прямой (рис. 85).

Рис. 85 Рис. 86

Ре ш е н и е. Расстояние от точки до прямой выражается отрезком перпендикуляра, опущенного из данной точки на данную прямую и ограниченного данной точкой и точкой его пересечения с прямой, т.е. необходимо прежде всего опустить из точка на прямую перпендикуляр и найти его основание.

Прямой угол между данной прямой ВС и прямой к ней перпендикулярной, будет проектироваться без искажения на плоскость, параллельную данной прямой. Следовательно, прежде всего необходимо выбрать новую плоскость проекций, параллельную прямой : выбираем новую плоскость , параллельную прямой ВС, такому выбору плоскости на ортогональном чертеже (рис. 86) соответствует выбор новой оси параллельно проекции .

Строим уже известным образом на новой плоскости проекций проекции точки и проекцию прямой . Затем из точки на проекцию прямой опускаем перпендикуляр и находим его основание –– точка является проекцией на плоскость основания перпендикуляра , опущенного из данной точки на данную прямую.

Для построения проекции на плоскость Н этого перпендикуляра , через точку проводим прямую, перпендикулярную к оси (линию проекционной связи) до пересечения в точке с проекцией bc, и точку а соединяем с точкой (рис. 86).

Отрезки являются проекциями расстояний от данной точки А до заданной прямой ВС соответственно в плоскостях проекций и Н, но это ещё не истинное расстояния от точки А до прямой ВС, а только её проекции.

Последним этапом решения задачи является определение истинной длины отрезка , который является искомым расстоянием. Указанный отрезок будет проектироваться без искажения на плоскость ему параллельную. Следовательно, для окончательного решения задачи необходимо выбрать новую плоскость проекций , параллельную отрезку (рис. 87).

Рис. 87

В качестве новой плоскости проекций выбираем плоскость На ортогональном чертеже выбору этой плоскости соответствует выбор новой оси параллельно проекции [13]. Построенную новую систему плоскостей проекций с осью свяжем на ортогональном чертеже рисунка 85 с системами и .

Строим в плоскости системы проекцию отрезка , откладывая для получения проекции каждой точки этого отрезка соответственно расстояния от оси : для получения точки , а для точки . Нужно отметить, что проекция прямой ВС на плоскости проекций проектируется в точку, совпадая с проекцией , т.к. в пространстве плоскость перпендикулярна к прямой ВС (см. рис. 87).

Длина проекции является истинной длиной расстояния от точки А до прямой ВС –– задача решена.

Задача 2. Найти расстояние между двумя параллельными прямыми и (рис. 88).

Р е ш е н и е. Искомое расстояние выражается отрезком перпендикуляра, проведённого к обеим данным параллельным прямым и ограниченного точками пересечения с этими прямыми при параллельности плоскости, образованной этими параллельными прямыми, какой-то плоскости проекций.

Рис. 88 Рис. 89

Для осуществления первого этапа решения задачи выбираем новую плоскость проекций , параллельную плоскости, образованных этими прямыми. Такому выбору плоскости на ортогональном чертеже рисунка 89 соответствует выбор новой оси параллельной данным параллельным прямым и .

Известным методом в новой плоскости проекций строим проекции прямых и .

Вторым этапом решения задачи является определение истинного расстояния между параллельными прямыми и .

Для окончания решения задачи необходимо выбрать новую плоскость проекций ,

перпендикулярную к данным прямым и . На ортогональном чертеже выбору этой плоскости соответствует выбор новой оси системы (рис. 89). Находим проекцию отрезка , который является взаимным перпендикуляром к заданным параллельным прямым.

В плоскости строим прямую , которая является истинным расстоянием между заданными прямыми и .

Следует обратить внимание, что проекции на плоскости точек прямой проектируются в одну точку вместе с проекцией , а точек прямой –– вместе с (рис. 89).


ПРОЕКТИРОВАНИЕ ГЕОМЕТРИЧЕСКИХ ПОВЕРХНОСТЕЙ

И ГЕОМЕТРИЧЕСКИХ ТЕЛ

Геометрические тела, с которыми приходится встречаться в инженерной практике, могут быть разделены на два класса:

1. Геометрические тела с кривыми поверхностями. Это поверхности вращения: конус, цилиндр, сфера-шар.

2. Геометрические тела с многогранными поверхностями или многогранники: призма, пирамида.

ПОВЕРХНОСТИ ВРАЩЕНИЯ

Поверхности вращения образуются вращением линии 1 вокруг прямой i – оси вращения. Определитель поверхности вращения включает образующую 1 и ось i. Каждая точка образующей описывает при вращении окружность, плоскость которой перпендикулярна оси вращения. Эти окружности называются параллелями (h). Наибольшую и наименьшую параллели конуса называют соответственно экватором и горлом. Кривые, образующиеся на поверхности вращения в результате пересечения поверхности плоскостями, проходящими через ось вращения, называют меридианами. Точки на поверхности вращения обычно строят с помощью параллелей h и образующих 1.

Цилиндр образуется вращением прямой 1 вокруг параллельной ей оси i (рис. 1).

Рис. 1 Рис. 2

Конус образуется вращением прямой 1 вокруг пересекающейся с ней оси i (рис. 2).

На этих же рисунках показано определение точки М, принадлежащей поверхностям цилиндра и конуса.

Сфера (шар) образуется вращением окружности вокруг её диаметра (рис. 3). Построение точек на сфере выполняют с помощью параллелей h. Наибольшая параллель сферы (круга) проходит через центр сферы и называется экватором. Если нужно найти точку М, принадлежащую поверхности сферы, то через заданную проекцию этой точки проводится проекция параллели h, затем находится вторая проекция этой параллели, после чего на ней с помощью линии связи строится недостающая проекция точки М.

 

МНОГОГРАННИКИ

Призма – многогранник, у которого две грани основания одинаковые и взаимно параллельные многоугольники, а остальные грани (боковые) – параллелограммы (рис. 3а). Рис. 3

Пирамида – многогранник, у которого одна грань, которая

принимается за основание, является произвольным многоугольником,

а остальные грани (боковые) – треугольники с общей точкой, которая

называется вершиной S (рис. 3б).

Рис. 3 а Рис. 3 б

Призма. Пирамида.

АВС – нижнее основание. S – вершина.

– верхнее основание. АВС – основание.

АВ – грань. ABS – грань.

В – ребро. SB – ребро.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: