Охлаждение водой и низкотемпературными жидкими хладоагентами

Охлаждение водой используют для достижения температур охлаждаемой среды на уровне 10-30С. При этом достигаемая температура охлаждения зависит от начальной температуры воды, которая в зависимости от ее источника может быть прудовой, речной, озерной, артезианской (получаемой из подземных скважин) или же оборотной, прошедшей водооборотный цикл промышленных предприятий. Речная, прудовая и озерная вода в зависимости от времени года имеет температуру 4-25С, артезианская вода-8-12С, а оборотная (в летних условиях) - приблизительно 30С. С помощью воды можно охлаждать технологические жидкости до 25-30 С.

рекомендуется обеспечивать такой режим охлаждения, при котором температура воды, выходящей из теплообменника, будет 40-50С.

Охлаждение водой осуществляют главным образом в поверхностных теплообменниках (холодильниках), конструкции которых рассмотрены ниже. Охлаждающая вода в холодильниках обычно движется снизу вверх. При таком направлении движения конвекционные токи, обусловленные изменением плотности теплоносителя за счет изменения температуры, совпадают с направлением движения теплоносителя. Кроме того, воду используют для охлаждения в смесительных теплообменных аппаратах, в которых происходит непосредственное соприкосновение охлаждаемого и охлаждающего теплоносителей.

Достижение более низких температур охлаждения можно обеспечить с помощью низкотемпературных жидких хладоагентов. К их числу относятся жидкий аммиак, фреоны (хладоны), диоксид углерода, холодильные рассолы - водные растворы некоторых солей, например хлоридов натрия, магния или кальция, замерзающих при низких температурах. Эти жидкие хладоагенты циркулируют в специальных холодильных установках, где теплота от охлаждаемой среды отнимается при их испарении. Холодильные же рассолы выполняют роль промежуточных теплоносителей между испарителем холодильной машины (источник холода) и охлаждаемой средой (потребитель холода). В последнее время фреоны вследствие разрушения ими озонного слоя атмосферы заменяют другими хладоагентами.

Охлаждение воздухом

Воздух в качестве охлаждающего агента, как и воду, широко используют в химической технологии. По сравнению с водой воздух более доступен и, несмотря на то, что он обладает значительно меньшими значениями коэффициентов теплоотдачи и объемной теплоемкости (малые теплоемкость, теплопроводность и плотность) (это, в свою очередь, определяет значительно большие потребные поверхности теплообмена и расход теплоносителя), в современной технологии наблюдается тенденция к замене воды как охлаждающего агента воздухом. Помимо этого воздух не загрязняет поверхность теплоотдачи отложениями, не корродирует теплообменную аппаратуру, что положительно сказывается на увеличении срока службы воздушных холодильников.

Наиболее широко воздух в качестве охлаждающего агента используют в смесительных теплообменниках-градирнях, являющихся основным элементом оборудования водооборотного цикла.

Холодильные машины

Для охлаждения до температур ниже 0°С применяют хладоагенты, получаемые в холодильных установках. Методы охлаждения и ассортимент хладоагентов определяются интервалом температур. По этому признаку различают

-умеренное охлаждение (от комнатной температуры до - 100°С)

-глубокое охлаждение (ниже-100°С).

Умеренное охлаждение основано на испарении жидкостей с низкими температурами кипения. При обычных условиях они находятся в газообразном состоянии. К числу наиболее распространенных хладоагентов относятся аммиак и фреоны - фторхлорзамещенные производные метана и этана.

Промежуточные хладоагенты применяются для охлаждения до не очень низких температур (до-40°С) и обеспечивают возможность одновременного охлаждения в нескольких аппаратах. В качестве промежуточных хладоагентов используют водные растворы хлористого кальция или хлористого магния с низкой температурой кристаллизации.

Глубокое охлаждение основано на использовании эффекта Джоуля-Томсона. Он называется иногда дроссельным эффектом. Эффект Джоуля-Томсона заключается в понижении температуры газа при его адиабатическом расширении. В установках глубокого охлаждения рабочим телом чаще всего является воздух.

Холодильными машинами или термокомпрессорами называются машины, непрерывно поддерживающие температуры тел ниже температуры окружающей среды.

Холодильные машины подразделяются на воздушные (газовые), паровые, пароэжекторные, абсорбционные, а также машины, принцип действия которых основан на эффектах Пельтье и Ранка-Хильша.

В паровых (парокомпрессорных) холодильных установках рабочим телом являются пары веществ - аммиака, углекислоты, сернистого ангидрида, фреонов (фторпроизводных углеводородов), т.е. низкокипящие жидкости. Благодаря этому рабочий цикл можно расположить в двухфазной области состояния, в которой изобарные процессы подвода и отвода теплоты можно заменить на изотермические и тем самым уменьшить потери, связанные с необратимостью процессов.

Ввиду простоты конструкции, по сравнению с воздушными, высокой холодопроизводительности и большой надежности работы, эти установки получили самое широкое распространение в технике.

В пароэжекторных и абсорбционных холодильных установках для получения низких температур затрачивается не механическая работа, как в паровых или газовых, а теплота какого-либо рабочего тела с высокой температурой. В пароэжекторной установке для сжатия холодильного агента используется кинетическая энергия струи пара некоторого вещества. Эти установки отличаются невысоким холодильным эффектом и в промышленности применяются редко.

Более широкое распространение получили абсорбционные холодильные машины, в которых для получения низких температур используется как в пароэжекторных энергия в виде теплоты.

Абсорбционные холодильные установки существенно отличаются от всех других простотой конструкции. Для абсорбционной установки подбираются две жидкости, которые полностью растворяются друг в друге и имеют разные температуры кипения. Процесс поглощения всей массы одного тела другим называется абсорбцией. При этом легкокипящая жидкость используется как холодильный агент; а жидкость с более высокой температурой кипения - как абсорбент.

Работа такой установки состоит в следующем. В парогенераторе в результате подвода теплоты холодильный агент выпаривается из абсорбента в виде почти сухого насыщенного пара. Затем он поступает в конденсатор, где полностью конденсируется, отдавая теплоту парообразования охлаждающей воде. В дроссельном вентиле холодильный агент дросселируется, что сопровождается уменьшением давления и температуры и увеличением объема. При дальнейшем поступлении холодильного агента в теплообменник ему передается теплота от охлаждаемых тел. Затем холодильный агент поступает в абсорбер и вновь соединяется с абсорбентом. Полученная смесь вновь направляется насосом в парогенератор.

Термодинамически эти установки менее совершенны, чем паровые, однако они значительно проще по конструкции (ввиду отсутствия компрессора), дешевле, более надежны в работе и поэтому получили достаточно широкое распространение.

 

Подвод тепла.

Топочные газы получают, сжигая в топках печей твердое, жидкое или газообразное топливо. При этом тепло промежуточным теплоносителям передается, как правило, через стенки встроенных в печь труб за счет излучения, теплопроводности и конвекции (сложный теплообмен). Существенная доля тепла, передаваемого излучением, объясняется высокой температурой, достигаемой при горении (~1000 С). Температуру нагревания топочными газами можно регулировать за счет их частичной рециркуляции, возвращая в печь отработанные газы либо подводя дополнительное количество воздуха.

Подвод тепла электрическим током обеспечивает легкую регулировку температурного режима. Различают следующие способы подвода тепла электрическим током: за счет электрического сопротивления (прямого или косвенного), индукционный, высокочастотный и дуговой.

В случае электрического сопротивления прямого действия тепло выделяется при прохождении электрического тока через среду, помещенную в аппарат. При этом одним из электродов служит корпус аппарата, а другой находится в самой среде. Подвод теплоты за счет электрического сопротивления косвенного действия осуществляется при прохождении электрического тока через специальные нагревательные элементы, от которых тепло передается среде путем излучения, теплопроводности и конвекции.

При индукционном подводе тепла аппарат является сердечником соленоида, по которому пропускают переменный электрический ток. Переменное магнитное поле индуцирует в стенках аппарата индукционные токи, вызывающие нагрев аппарата.

Высокочастотный способ подвода тепла применим к диэлектрикам. Они помещаются в переменное электрическое поле высокой частоты, под действием которого молекулы поляризуются и поворачиваются с высокой частотой. В результате трения между молекулами выделяется теплота. Основным преимуществом данного способа является равномерный прогрев материала, так как выделение теплоты происходит во всем его объеме.

Электродуговой способ подвода тепла осуществляется за счет пламени дуги, возникающей между электродами. Причем одним из электродов может служить сам теплоноситель. Этот способ позволяет достичь высокой температуры (1500 – 3000 С), но сложен в регулировании.

 

 

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: