Длины волн различных видов электромагнитного излучения

Название электромагнитного излучения Диапазон длин волн, ИМ
у-излучение < 0,01
Рентгеновское излучение < 10
Ультрафиолетовое излучение 10-400
Видимый свет:  
фиолетовый 400-420
синий 420^*90
зеленый 490-540
желтый 540-640
красный 640-800
Инфракрасное излучение 800-100 000
Радиоволны > 105

Как будет показано далее, ионизация веществ лежит в основе биоло­гической активности ИИ. Этот же феномен используется для их выявле­ния и количественной оценки (дозиметрии).

Взаимодействие электромагнитного ИИ с атомами вещества может протекать в формах фотоэффекта, комптон-эффекта и образования элек-грон-позитронных пар.

Фотоэффект — поглощение одной из внешних электронных оболо­чек атома всей энергии фотона с превращением ее в кинетическую энер­гию «выбитого» из атома электрона. Этот эффект преобладает при энер­гии фотонов до 0,05 МэВ.

Комптон-эффект — передача электрону лишь части энергии фотона; остальная энергия передается вторичному («рассеянному») фотону, кото­рый взаимодействует с атомами по механизму фотоэффекта или комп­тон-эффекта. При энергиях квантов от 0,1 до 2,0 МэВ (например, в слу­чае проникающей радиации ядерного взрыва) на долю комптон-эффекта приходится до 99—100% поглощенной веществом энергии у-излучения.

Образование электрон-позитронных пар при прохождении у-кванта в непосредственной близости от ядра атома — это основной вид взаимо­действия фотонов с веществом при их энергии более 50 МэВ, его удается наблюдать лишь в лабораторных условиях.

Образующиеся при поглощении квантов электромагнитного излуче­ния ускоренные заряженные частицы (фотоэлектроны, комптоновские электроны) являются вторичным, но первостепенным по значимости фактором ионизации и возбуждения атомов в облучаемом веществе. Поэ­тому рентгеновы и у-лучи называют косвенно ионизирующими излучениями.

Энергия фотонов определяет не только их ионизирующую, но и про­никающую способность. Высокоэнергетические («жесткие» — по опреде­лению В. К. Рентгена) электромагнитные излучения легко проникают вглубь тела человека и животных, вызывая ионизацию во всех клетках ор­ганизма. Напротив, «мягкие» рентгеновы лучи, которые получают при напряжении на аноде рентгеновской трубки величиной в несколько кВ, задерживаются в основном кожей, не оказывая существенного прямого действия на глубоко лежащие ткани.

При прохождении электромагнитных ИИ через вещество интенсив­ность их потока уменьшается в соответствии с уравнением:

I=I0e-μx

где I — интенсивность прошедшего сквозь экран потока излучения; 10 — интенсивность падающего потока излучения; е — основание натурального логарифма;

ц — коэффициент ослабления, величина которого зависит от энергетического

спектра ИИ и свойств вещества; х — толщина экрана.

Практически удобным показателем экранирующей способности мате­риалов является толщина их слоя, при которой излучение ослабляется вдвое (слой половинного ослабления). Эта величина связана с коэффициен­том ослабления ИИ зависимостью:

d 0,5 = 0,693/ц.

Коэффициент ослабления электромагнитных ИИ растет с увеличени­ем порядкового номера в таблице Менделеева, а значит, и атомной массы входящих в вещество элементов. Поэтому наиболее эффективно экрани­руют от электромагнитных ИИ вещества, содержащие тяжелые металлы («защита экранированием»). Свинец и барий вводят в состав материалов, используемых при сооружении помещений для лучевой диагностики и терапии. «Защита экранированием» дополняется «защитой расстоянием», основанной на зависимости интенсивности потока ИИ от расстояния до его источника, и «защитой временем» — минимизацией времени воздей­ствия ИИ на персонал.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: