Второй слой — светочувствительные клетки (фоторецепторы)

Колбочкоподобные и палочкоподобные клетки, а проще говоря, палочки и колбочки получили такое название из-за формы наружного сегмента. Данный вид клеток считается первым нейроном сетчатки.

Палочки представляют собой правильное цилиндрически образования длиной от 40 до 50 микрон. Общее число палочек во всей сетчатке около 130 млн.. Они обеспечивают зрение при слабом освещении, например, ночью, обладая очень высокой световой чувствительностью.

Колбочек в сетчатке человеческого глаза – 7 млн. и действуют они только в условиях яркого освещения. Они отвечают за центральное форменное зрение и цветоощущение.

Фоторецепторами являются палочки и колбочки, расположенные в наружном слое сетчатки. Палочки и колбочки сходны по своему строению, они состоят из четырех участков:

1. Наружный сегмент - светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал. Наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках в каждом наружном сегменте содержится 600 - 1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше, они представляют собой складки плазматической мембраны.

2. Перетяжка - место, где наружный сегмент почти полностью отделен от внутреннего впячиванием наружной мембраны. Связь между двумя сегментами осуществляется через цитоплазму и пару ресничек, переходящих из одного сегмента в другой.

3. Внутренний сегмент - область активного метаболизма, заполненная митохондриями, доставляющими энергию для процессов зрения, и полирибосомами, на которых синтезируются белки, участвующие в образовании мембранных дисков и зрительного пигмента. Здесь же расположено ядро.

4. Синаптическая область - место, где клетка образует синапсы с биполярными клетками. Диффузные биполярные клетки могут образовывать синапсы с несколькими палочками. Это явление, называемое синаптической конвергенцией, уменьшает остроту зрения, но повышает светочувствительность глаза. Моносинаптические биполярные клетки связывают одну колбочку с одной ганглиозной клеткой, что обеспечивает лучшую по сравнению с палочками остроту зрения. Горизонтальные клетки и амакриновые клетки связывают вместе некоторое число палочек или колбочек. Благодаря этим клеткам зрительная информация еще до выхода из сетчатки подвергается определенной переработке. Эти клетки участвуют также в латеральном торможении.

Палочек в сетчатке содержится больше, чем колбочек - 120 млн и 6 - 7 млн соответственно. Тонкие, вытянутые палочки размером 50х3 мкм равномерно распределены по всей сетчатке, кроме центральной ямки, где преобладают удлиненые конические колбочки размером 60х1,5 мкм. Так как в центральной ямке колбочки очень плотно упакованы (150 тыс. на кв.мм), этот участок отличается высокой остротой зрения. Палочки обладают большей чувствительностью к свету и реагируют на более слабое освещение. Палочки содержат только один зрительный пигмент, не могут различать цвета и используются преимущественно в ночном зрении. Колбочки содержат три зрительных пигмента, что позволяет распознавать цвета, они используются преимущественно при дневном свете. Палочковое зрение отличается меньшей остротой, так как палочки расположены менее плотно и сигналы от них подвергаются конвергенции, но именно это обеспечивает высокую чувствительность, необходимую для ночного зрения.

Палочки содержат светочувствительный пигмент родопсин.

Фоторецепторы (от греч. phos - свет + лат. receptor -'принимающий) -рецепторы, которые производят трансформацию световой энергии в нервные сигналы (см. Рецепция); у человека это палочки (П.) и колбочки (К.), находящиеся в сетчатке глаза.

Зрительный пигмент, структурно-функциональная единица светочувствительной мембраны фоторецепторов сетчатки глаза — палочек и колбочек. В Зрительный пигмент осуществляется первый этап зрительного восприятия — поглощение квантов видимого света. Молекула Зрительный пигмент (молярная масса около 40 000) состоит из хромофора, поглощающего свет, и опсина — комплекса белка и фосфолипидов. Хромофором всех Зрительный пигмент служит альдегид витамина A1 или A2 — ретиналь или 3-дегидроретиналь. Два вида опсина (палочковый и колбочковый) и два вида ретиналя, соединяясь попарно, образуют 4 вида Зрительный пигмент, различающихся по спектру поглощения: родопсин (самый распространённый палочковый Зрительный пигмент), или зрительный пурпур (максимум поглощения 500 нм), иодопсин (562 нм), порфиропсин (522 нм) и цианопсин (620 нм). Первичное фотохимическое звено в механизме зрения состоит в фотоизомеризации ретиналя, который под действием света меняет изогнутую конфигурацию на плоскую. За этой реакцией следует цепь темновых процессов, приводящих к возникновению зрительного рецепторного сигнала, который затем синаптически передаётся следующим нервным элементам сетчатки — биполярным и горизонтальным клеткам.

Электроретинограмма (электро- + ретинограмма) - кривая, отображающая изменение биопотенциалов сетчатки, полученная методом электроретинографии.

Как справедливо для многих других сенсорных систем, сетчатка имеет и старый тип зрения (палочковый) и новый тип зрения (колбочковый). Нейроны и нервные волокна, проводящие сигналы колбочкового зрения, значительно крупнее нервных элементов, проводящих сигналы палочкового зрения, потому сигналы от колбочек проводятся в мозг в 2-5 раз быстрее. Кроме того, контур двух систем слегка различен.

Справа на рисунке показан зрительный путь от области центральной ямки сетчатки, представляющий новую быструю колбочковую систему. Это прямой путь из трех нейронов: (1) колбочек; (2) биполярных клеток; (3) ганглиозных клеток. Кроме того, горизонтальные клетки проводят тормозные сигналы латерально в наружном сетчатом слое, а амакриновые клетки проводят сигналы латерально во внутреннем сетчатом слое.

Слева на рисунке — нервные связи на периферии сетчатки, где имеются и палочки, и колбочки. Показаны три биполярные клетки; средняя из них связана только с палочками, что характерно для зрительной системы, представленной у многих низших животных. Аксон этой биполярной клетки связан только с амакриновыми клетками, которые передают сигналы к ганглиозным клеткам. Таким образом, для чисто палочкового зрения в прямой путь связаны четыре нейрона: (1) палочки; (2) биполярные клетки; (3) амакриновые клетки; (4) ганглиозные клетки. Горизонтальные и амакриновые клетки также обеспечивают латеральные взаимосвязи.

Две другие биполярные клетки, показанные в периферической части контура сетчатки на рисунке, связаны и с палочками, и с колбочками; выходы этих биполярных клеток проходят к ганглиозным клеткам как непосредственно, так и через амакриновые клетки.

Нейромедиаторы нейронов сетчатки. Еще не все нейромедиаторы, используемые для синаптическои передачи в сетчатке, полностью раскрыты. Однако и палочки, и колбочки в их синапсах с биполярными клетками выделяют глутамат.

Гистологические и фармакологические исследования выявили много типов амакриновых клеток, секретирующих, по крайней мере, восемь типов медиаторов, в том числе гамма-аминомасляную кислоту, глицин, дофамин, ацетилхолин и индоламин, которые в норме функционируют как тормозные медиаторы. Функциональное назначение медиаторов биполярных, горизонтальных и межсетчатых клеток пока не ясно, однако известно, что некоторые из горизонтальных клеток выделяют тормозные медиаторы.

Ганглиозные клетки — единственные нейроны сетчатки, сигналы которых всегда передаются в виде потенциалов действия, идущих по зрительному нерву к мозгу. Иногда потенциалы действия регистрируются также в амакриновых клетках, хотя значение их не ясно. Во всех других случаях нейроны сетчатки проводят зрительные сигналы электротонически, что можно объяснить следующим образом.

Электротоническое проведение означает непосредственное распространение электрического тока, без развития потенциалов действия, по цитоплазме нейрона и нервным аксонам от точки возбуждения к месту синаптическои связи. Так, проведение от наружных сегментов палочек и колбочек, где генерируются зрительные сигналы, к синаптическим телам осуществляется электротонически. Это значит, что гиперполяризация, возникающая в ответ на действие света в наружном сегменте палочки или колбочки, проводится почти без изменений в виде электрического тока, проходящего по цитоплазме весь путь до синаптического тела, и никакого потенциала действия не требуется. Далее, когда медиатор, выделяющийся из палочки или колбочки, стимулирует биполярную или горизонтальную клетку, сигнал снова передается от входа к выходу клетки путем местного электрического тока, без развития потенциалов действия.

Значение электронического проведения состоит в том, что оно позволяет проводить сигналы, градуированные по силе. Так, для палочек и колбочек величина их гиперполяризации прямо зависит от интенсивности освещенности; сигнал не подчиняется закону «все или ничего», как было бы в случае развития потенциала действия.

Световая и темновая адаптация. Чувствительность рецепторных клеток глаза не постоянна, а зависит освещенности и предшествующего раздражителя. Так, после действия интенсивного света чувствительность рецепторных клеток резко понижается, а в темноте — возрастает. Зрение адаптируется к свету быстрее — в течение нескольких минут, а темновая адаптация достигается лишь через несколько десятков минут.

Это различие частично объясняется тем, что чувствительность «дневных» колбочек меняется быстрее (от 40 с до нескольких минут), чем «вечерних» палочек (их адаптация полностью заканчивается лишь спустя 40-50 мин). При этом палочковая система становится намного чувствительнее колбочковой: в абсолютной темноте порог зрительной чувствительности достигает уровня 1-4 фотонов в секунду на фоторецептор.

В скотопических условиях световые стимулы лучше различаются не центральной ямкой, а окружающей ее частью, где плотность палочек наибольшая. Кстати, различие скорости адаптации вполне объяснимо: в естественной природе освещенность после захода солнца снижается достаточно медленно. Механизмы адаптации к меняющейся освещенности начинаются с рецепторного и оптического аппаратов глаза. Последнее связано с реакцией зрачка: сужение на свету и расширение в темноте.

Этот механизм включается с помощью ВНС. В результате изменяется количество рецепторов, на которые падают лучи света: подключение в сумерках палочек ухудшает остроту зрения и замедляет время темновой адаптации.

B самих рецепторных клетках процессы понижения и повышения чувствительности, с одной стороны, обусловлены изменением равновесия между распадающимся и синтезируемым пигментом (определенная роль в этом процессе принадлежит пигментным клеткам, снабжающим палочки витамином А). С другой стороны, с участием нейронных механизмов регулируются размеры рецепторных полей, а также переключение с колбочковой системы на палочковую.

Обработка зрительной информации. Организация рецептивных полей ганглиозных клеток сетчатки. Концентрические рецептивные поля ганглиозных клеток сетчатки. Обработка информации в корковых центрах. Рецептивные поля нейронов зрительной коры. Ретинотопическая проекция.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: