Поглинання УЗ біологічними тканинами

Тканини поглинають ультразвук нерівномірно. Слабке поглинання відбувається в підшкірній жировій клітковині, більше в м'язах, нервах і особливо в кістках. І тканини, що виконують функцію опори, і тканини, що отримують і пе­редають механічне напруження, мають вищі значення по­глинання, ніж тканини паренхіматозних органів. Ко­ефіцієнт поглинання ультразвуку для кісткової тканини у 12—15 разів вищий, ніж для м'язової тканини. Глибина проникнення ультразвуку у кістку мінімальна і становить близько 0,3 см. Максимально енергія ультразвуку погли­нається на межі поділу різних тканин: шкіра — підшкірна жирова клітковина, фасція—м'яз, окістя — кістка. При патологічних процесах поглинання ультразвуку зміню­ється. Якщо патологічний процес супроводжується на­бряком тканин, то коефіцієнт поглинання ультразвуко­вих хвиль зменшується. Інфільтрація тканин клітинними елементами веде до підвищення коефіцієнта поглинання.

Вважається, що в умовах цілісного організму ультра­звук частотою 800—1000 кГц поширюється на глибину 5—6 см, а частотою 2500—3000 кГц — на 1,5—2 см. Оскільки амплітуда ультразвукових коливань поступово зменшується, то для оцінки глибини їх проникнення кори­стуються величиною напівпоглинаючого шару. Вона вка­зує, на якій глибині інтенсивність коливань унаслідок по­глинання тканинами зменшується вдвоє. Величина на­півпоглинаючого шару тим менша, чим більша в'язкість тканини і чим вища частота коливань. Так, при частоті 800 кГц величина цього шару для м'яких тканин (жирова і м'язова) дорівнює 4,9 см, а при частоті — 2400 кГц — 1,5 см. З урахуванням цього для лікування хвороб внутрішніх органів використовують частоту 880 кГц, а в дерматологічній практиці частіше застосовують ультра­звук із частотою коливань 2000—3000 кГц. Основними дозиметричними параметрами ультразву­кової терапії є потужність, інтенсивність, режим і три­валість дії. Потужність — це кількість енергії, що випромі­нюється всією поверхнею ультразвукової головки. У фізіо­терапії частіше послуговуються поняттям «інтенсивність». Інтенсивність — це кількість ультразвукової енергії, що проходить через 1 см2 площі випромінювача протя-гдм 1 с. Вона представлена у ватах на 1 см2 (Вт/см2). Утвердився поділ інтенсивності ультразвуку на малу (0,05—0,4 Вт/см2), середню (0,6—0,8 Вт/см2) і велику (1,0—1,2 Вт/см2).

Режим генерації ультразвуку може бути постійним (неперервний ультразвук) і імпульсним, коли коливання подаються окремими імпульсами з інтервалами (імпульс­ний ультразвук). При цьому частота імпульсів дорівнює 50 Гц, тривалість— 10,4 і 2 мс, а скважність (відношення тривалості всього періоду до тривалості проходження імпульсу) відповідно дорівнює 2,5 і 10. В імпульсному ре­жимі при одній і тій самій інтенсивності коливань за один і той самий проміжок часу енергії випромінюється в се­редньому менше, ніж при неперервному.

Фізіологічна дія УЗ

У механізмі дії ультразвуку на організм головне зна­чення мають механічний, тепловий і фізико-хімічний фак­тори. Механічний фактор, який спричиняється змінним акустичним тиском, виявляється своєрідним «мікромасажем» на клітинному і субклітинному рівнях. При цьому відбувається підвищення проникності клітинних мембран, гістогематичних бар'єрів та посилення проникнення речо­вин через шкіру; має значення і деполімеризуюча дія уль­тразвуку на гіалуронову кислоту. Виникає активація елек­трокінетичних (електрокапілярних) явищ, що спостерігаю­ться на межі середовищ з різним акустичним опором і мають велике значення при фонофорезі. З'являються аку­стичні мікропотоки в протоплазмі, переміщення внутрі­шньоклітинних включень, зміна їх просторового взаємо-положення, що викликає стимуляцію функції клітинних елементів і клітини в цілому.

Тепловий фактор ультразвуку пов'язаний із поглинан­ням енергії ультразвукових хвиль і перетворенням її в тепло. Раніше у разі використання великих інтенсивностей ультразвуку спостерігали значне підвищення температури тканин, і тому цей фактор вважали найважливішим у ме­ханізмі дії ультразвуку. При використанні невеликих інтенсивностей і лабільної методики впливу значного підвищення температури тканин не спостерігається. Нині, не заперечуючи значення теплового фактора, за ним не визначають головного значення. Наслідком теплової дії ультразвуку можна вважати зміну дифузних процесів, швидкості біохімічних реакцій, виникнення температурних градієнтів, що врешті-решт проявляється в життєдіяль­ності озвучених тканин.

Фізико-хімічний фактор ультразвуку виявляється зміною біохімічних реакцій і біофізичних процесів, просторовою перебудовою внутрішньоклітинних молекулярних комплексів. Збільшується активність ряду ферментів, інтенсивність тканинних окисно-відновних реакцій, прискорюється мітоз, утворення БАР (гепарину, гістаміну, серотоніну та ін.).

7. Вплив УЗ на здоров`я людини

Про вплив УЗ на здоров`я людини медики – теоретики і практики – категоричної відповіді не дають. Точніше, одні вважають ультразвук дуже ефективним і абсолютно безпечним, інші - навпаки. Пояснити таку ситуацію можна в основному тим, що ультразвук прийшов у медицину зовсім недавно (матеріали 1987 р.) Отже, цілком природно, що багато проблем тут ще не знайшли остаточного розв’язання. Мають рацію ті спеціалісти, які наголошують на творчому підході до використання ультразвуку у медицині, бо в більшості випадків лікування і діагностики з його допомогою дають тільки позитивні результати. Важливо лише вірно підібрати розмір, дози, метод і прилади. Дозу, як правило, вибирають для середньої інтенсивності за тривалістю впливу ультразвуку. Частоту ультразвукових коливань обирають в залежності від глибини розташування хворого органа. Чим нижча частота, тим глибше проникають в тіло ультразвукові коливання.

Надмірні дози ультразвуку на виробництві негативно впливають на організм людини. У тих, хто порушує правила техніки безпеки, може початися професійне захворювання. Тому опрацьовуються ефективні заходи по боротьбі з шкідливим впливом ультразвуку на людину.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: