Конкретные «образовательные технологии», «методы обучения», «формы обучения» и т.п

ТАБЛИЦА 1. Матрица разнообразия методов и форм обучения

Форма / Метод ОИ ПГ Э ПБ М
Рассказ ++++++   ++++++    
Беседа ++++++   ++++++    
Лекция ++++++        
Семинар ++++++        
Семинар-практикум          
Практикум          
Практическая работа ++++++        
Лабораторная работа ++++++ ++++++      
Экскурсия ++++++ ++++++ ++++++    
Самостоятельная работа ++++++ ++++++ ++++++ ++++++  

Естественно, что чем больше заполненных клеток у данного учителя, тем выше разнообразие его деятельности в управлении учебно-познавательным процессом. В нашей матрице показан типичный набор среднего учителя, полученный на репрезентативной выборке по территории России (более 4000 учителей). Этого можно было ожидать: «В традиционной дидактике в основном преобладают объяснительно-иллюстративные формы и методы обучения с незначительной по объему (по отношению ко всему методическому инструментарию) самостоятельной работой обучаемых, выполняемой в рамках различных теорий обучения. Некоторым расширением в направлении активизации самостоятельной деятельности и развития творческого потенциала обучаемых можно считать идеи, заложенные в теориях проблемного обучения, алгоритмизации обучения и др. Реализация идей вышеназванных теорий приводила к повышению качества усваиваемых знаний, умений и навыков; к экономии времени на изучение учебного материала, к формированию у обучаемого определенных умственных действий. При этом реализация идей, заложенных в каждой из теорий обучения, в значительной степени зависела (пер. стр. 18-19) от средств обучения, используемых в процессе обучения» (И. Роберт, 1991).

До сих пор мы рассматривали простейшую модель учебного процесса. В действительности учебный процесс является неразрывным единством трех составляющих: информационной (передача, прием, накопление, преобразование, хранение и применение информации — содержания обучения), психологической (становление и развитие человеческой индивидуальности) и кибернетической (управление учебно-познавательной деятельностью обучаемых). Длительное время среди этих компонентов предпочтение отдавалось первой. Главной целью школы считалось формирование у обучаемых знания основ наук. Однако сегодня в обществе это не считается приоритетом. На первый план выступает личностное развитие. Недаром все чаще мы говорим о личностно-ориентированном обучении. Но представляется, что отечественная школа пока не совсем готова к такой постановке задачи. Поэтому сейчас первой по значимости оказывается кибернетическая составляющая учебного процесса: ученик учится, а школа организует этот процесс и управляет им. Но если рассматривать учебный процесс как кибернетический, то он должен подчиняться фундаментальным принципам и теоремам этой науки.

С точки зрения кибернетики происходящее в классе можно рассматривать как сложную систему с регулированием вариаций, где учитель с его образовательной технологией является управляющей системой, а ученики — управляемым объектом. Функционирование таких систем описывается шестью принципами, которые мы рассмотрим позже. Сейчас же нас интересует первый из них, сформулированный У. Р. Эшби, — принцип ограничения разнообразия. На языке кибернетики он выглядит так: сложная система с регулированием вариаций имеет стабильно высокий выход тогда и только тогда, когда разнообразие управляющей системы не ниже разнообразия управляемого объекта. Ограничимся интуитивным пониманием того, что такое разнообразие. И так ясно, что разнообразие класса велико. Принцип требует, чтобы «разнообразие» учителя было не ниже. Удовлетворить этому принципу можно двумя способами: снизить разнообразие класса или повысить «разнообразие» учителя. Традиционная школа шла первым путем, и это привело к тому, что учитель работал на «среднего», не существующего в природе ученика по единым унифицированным программам с жестким административным контролем за временем (пер. стр. 19-20) «прохождения» того или иного материала. Правда, это нивелирование всегда сопровождалось призывами к индивидуальному подходу и нельзя отрицать, что были учителя-мастера, которые добивались в этом успехов. Существовавшая школа хорошо соответствовала обществу, в котором она функционировала, и качество российского образования всегда считалось в мире одним из лучших. Но, по сути дела, индивидуального подхода как не было, так и нет, поскольку настоящий индивидуальный подход предполагает построение для каждого ученика собственной траектории «продвижения» по материалу, отвечающей его потребностям, возможностям и психологическим особенностям. Мы же в лучшем случае наблюдали у учителей «карточки для сильных» и «карточки для слабых».

Представленная здесь матрица методов и форм может служить инструментом повышения «разнообразия» учителя, особенно в сочетании с накопленным им арсеналом приемов педагогической техники. Первый путь — ограничение разнообразия класса — тоже не следует отметать, но способ его реализации иной — групповое обучение. Об этом позже, а пока вернемся к матрице, которую теперь назовем матрицей разнообразия обучающей системы». [Гузеев В.В. Образовательная технология: от приема до философии / М.: Сентябрь, 1996. — C. 17-20]

Роберт И. Новые информационные технологии в обучении: дидактические проблемы, перспективы использования //Информатика и образование. -1991. -№4. -С. 18-25.

«Модельный метод обучения» (занятия в виде деловых игр, уроки типа: урок-суд, урок-аукцион, урок-пресс-конференция)

«Модельный метод обучения» в интерпретации В.В.Гузеева

«Есть основания полагать, что с модельным методом обучения связан завтрашний день школы, поскольку этот метод предоставляет ученику наибольшую меру самостоятельности и творческого поиска. Можно привести несколько примеров его длительного и успешного использования, и почти все они относятся к предметам естественно-математического цикла. Один из таких примеров — обучение геометрии на геоплане в Венгрии. Геоплан представляет собой квадратную доску, на которой в узлах квадратной решетки находятся штифты. Ученик имеет набор разноцветных резиновых колечек, которые может натягивать на штифты, получая различные геометрические фигуры. Это позволяет экспериментировать, выдвигать гипотезы, формирует потребность в доказательствах (известно, что мотивация доказательств — труднейший элемент деятельности учителя математики). Учитель управляет процессом через соответствующую постановку задач. Начинается курс с простейших заданий. Например, натянуть резинку на три штифта так, чтобы получился прямоугольный треугольник. Затем проделать то же с другими расположениями. Далее указывается, что эти разные треугольники получены с помощью сдвигов и поворотов. Теперь появляется простор для деятельности. Не откажем себе в удовольствии посмотреть полностью пример задачи из учебника Т.Варги (1978).

Задача. Как ты думаешь, сколько способов сделать такой резиновый треугольничек можно придумать, если учесть все возможные сдвиги и (пер. с. 14-15) повороты? Запиши свое мнение здесь: ___________________ Проверь свое предположение опытным путем, поэкспериментировав... И все, что при этом будет на дощечке возникать, зарисовывай на клетчатой бумаге. Выискивая интересующие нас сейчас треугольники, обязательно имей в виду следующие три обстоятельства:

Все наши треугольники должны быть одинаковой формы.
Каждый новый треугольник должен иметь иное положение, чем все предыдущие.
Не должен быть пропущен ни один из возможных случаев.
Кстати, а треугольник, который мы сейчас рассматриваем, действительно ли он самый маленький из всех возможных? Нет ли еще меньших? _________________________

Эта обширная цитата дана для иллюстрации работы учителя. Далее таким же образом курс развертывается до весьма нетривиальных фактов — таких, как формула Пика для площади, и других.

В отечественной системе образования модельный метод обучения также довольно давно и широко используется, но в специфической области — военной подготовке. Это обучение тактике на так называемом «ящике с песком» — изменяемой модели местности на большом столе с бортиками, с помощью которой создается тактическая обстановка и проигрываются различные варианты боевых действий. Преподаватель оценивает, достигают ли обучаемые запланированных результатов, и дает им советы и наставления. Аналогично это средство может применяться при изучении элементов курса географии: ландшафтов, речных бассейнов, геологических структур и т.д. Другой вариант этого же метода — путешествия по картам на уроках географии или истории.

С середины 80-х годов все большую популярность в школах приобретают разнообразные уроки в виде деловых игр: урок-суд, урок-аукцион, урок-пресс-конференция и тому подобное. Все деловые игры — это реализация модельного метода обучения. Рассмотрим, к примеру, типичную организацию урока-пресс-конференции. Пусть это будет урок химии по теме «Производство серной кислоты». Ситуация вводится учителем, ведущим пресс-конференцию, так: в некоторой местности планируется строительство комбината по производству серной кислоты и ее производных. Ответственные лица и ведущие специалисты будущего производства устраивают пресс-конференцию, чтобы подготовить благоприятное общественное мнение. В ходе пресс-конференции звучат многочисленные вопросы, ответы на которые дают полную и ясную картину изучаемого материала. Скажем, в ответ на вопрос газеты «Первозданная красота» о вредном воздействии производства на природу

Специалист по охране окружающей среды рассказывает о системе защиты от выбросов вредных веществ, а главный технолог — об особенностях технологического процесса. По просьбе тележурналистов специалист по общественным связям — о количестве создаваемых рабочих мест и выгодах, которые получит за счет налогов и отчислений местный бюджет. Для журналистов научно-популярного альманаха еще раз объясняются химические реакции, лежащие в основе технологического процесса. Для радиостанции транспортников раскрываются источники сырья, география сбыта продукции и перспективы развития системы коммуникаций. И так далее. Таким образом, мы видим, что, играя свои роли, ученики моделируют профессиональную деятельность, задавая самостоятельно начальные условия, возвращаясь к ним и уточняя. Это обучение с помощью модельного метода. Поскольку подготовить урок-пресс-конференцию, пользуясь только учебником химии, невозможно, то в план урока обязательно входит обсуждение результатов самостоятельной работы учеников с дополнительными источниками информации. По определению — это урок в форме семинара. Таким образом, урок-пресс-конференция представляет собой модельный семинар.

Если теперь рассмотреть урок-суд, то выяснится, что и он, несмотря на иной набор персонажей (прокурор, адвокат, обвиняемые, потерпевшие, свидетели, судьи и прочие), является модельным семинаром. Средства, применяемые на уроке-пресс-конференции и уроке-суде, могут быть даже одинаковыми. Разные действующие лица приводят лишь к различиям в наборе педагогических приемов. Поэтому можно считать, что уроком-пресс-конференцией и уроком-судом представлены две модели обучения, совпадающие на уровне метода, формы и средств. При этом не важно, различаются ли они по содержанию. То же можно отнести и к другим «урокам с дефисами» (урок-аукцион, урок-свадьба и им подобные).

Насыщение образовательных учреждений мощной электронно-вычислительной техникой является средством активизации модельного обучения. Имеется уже немалое количество соответствующих программных средств и создаются новые. Например, в США немногим больше десяти лет назад появился один из первых пакетов подобных программ, который был создан в Институте исследования информации и школы (IRIS) Университета Брауна (Yankelovich N. et ai., 1985): «Введение в проблемы ядерного разоружения», «Сохранение энергии», «География Ближнего Востока и Северной Африки», «Лингвистический подход к чтению». Из образцов совсем недавнего времени с удовольствием упомянем продемонстрированную Ирвином Кауфманом программу «Решения, (пер. с. 16-17) решения...», при работе с которой ученик выступает в роли мэра маленького городка в шахтерском крае и в преддверии выборов должен принимать важные решения из области экономики, экологии, политики, социальных наук; причем на его решения могут влиять советники, руководитель избирательной кампании, профсоюзы и население. Из отечественных разработок назовем программу «Сечения многогранников плоскостью» В. Л. Шамшурина (Московский педагогический университет). Таких программ автору удалось увидеть уже около трех десятков» [Гузеев В.В. Образовательная технология: от приема до философии / М.: Сентябрь, 1996. — C. 14-17]

Варга Т. Математика 2. Плоскость и пространство. Деревья и графы. Комбинаторика и- вероятность: (Математические игры и опыты) /Пер. с нем. —М.: Педагогика, 1978. -112 с.: илл.

Yankelovich N., Garrett L. N., Roeth J., Smith K., Waymire E. The Sampler Companion: Four Educational Software Samples //Frontiers in Education Conference Proceedings. -Golden, Oct. 19-22, 1985. -N.Y. —P.273-283.

1.4. Метод case study ("разбор конкретных ситуаций”)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: