Сравнительный анализ структур

При выборе структуры для представления конкретной системы следует учитывать их особенности и возможности. Сетевые структуры используются в тех случаях, когда систему удаётся отобразить через описание материальных и ин­формационных процессов, происходящих в ней, т.е. представить последовательностью геологических, геохимических и т.п. процессов, изготовления изделий, прохождения документов и т.д.

Предпочтительно представление во времени и процессов проектирования новых систем. Однако такое представление практически невозможно для сложных технических комплексов, особенно при проектировании организационных систем управления. В этих случаях вначале используют расчленение системы в пространстве, т.е. представление её различными видами иерархических структур. Наиболее предпочтительно получение древовидной структуры, которая более чётко отра­жает взаимоотношения между компонентами системы. Такое представление предпочтительно при организации производства сложных технических комплексов: древовидное расчленение изделия позволяет определить основные структурные единицы (цехи, участки и т.п.) производственной структуры, уточнение взаимодействия между которыми затем ведётся с помощью сетевых структур.

В организационных системах взаимоотношения между структурными единицами организационной структуры гораздо более сложны. Их не всегда удаётся сразу отобразить с помощью древовидной структуры. Используются иерархии со «слабыми связями», матричные структуры, а для сложных корпораций - многоуровневые структуры типа страт, эшелонов, смешанные структуры с вертикальными и горизонтальными связями.

От вида структур зависит важная характеристика любой системы - степень её целостности, устойчивости.

Для сравнительного анализа структур используются информационные оценки степени целостности a и коэффициента использования компонентов системы b, которые могут интерпретироваться как оценки устойчивости оргструктуры при предоставлении свободы элементам или как оценки степени централизации-децентрализации управления в системе.

Эти оценки получены из соотношения, определяющего взаимосвязь системной Сc, собственной С0 и взаимной Св сложности системы:

Cc=Сo+Св                                            (5.10)

Собственная сложность С0 представляет собой суммарную сложность (содержание) элементов системы вне связи их между собой (в случае прагматической информации - суммарную сложность элементов, влияющих на достижение цели).

Системная сложность Сс характеризует содержание системы как целого (например, сложность её использования).

Взаимная сложность Св характеризует степень взаимосвязи элементов в системе (т.е. сложность её устройства, схемы, структуры).

Разделив члены выражения (5.10) на Со, получим две важные сопряжённые оценки:

a = – Св / Со;                                                                                        (5.11)

 b= Сс / Со,                                                                                          (5.12)

причём b = 1 – a.

Оценка (5.11) характеризует степень целостности, связности, взаимозависимости элементов системы; для организационных систем. При этом α интерпретируется как характеристика устойчивости, управляемости, степени централизации управления.

Оценка (5.12) показывает самостоятельность, автономность частей в целом, степень использования возможностей элементов. Для организационных систем b удобно называть коэффициентом использования элементов в системе.

Знак минус в выражении (5.11) введён для того, чтобы α было положительным, поскольку Св в устойчивых системах, для которых характерно Со > Сс, формально имеет отрицательный знак. Связанное (остающееся как бы внутри системы) содержание Св характеризует работу системы на себя, а не на выполнение стоящей перед ней цели (чем и объясняется отрицательный знак Св). Последнее особенно важно учитывать при формировании оргструктур предприятий и других организаций.

 

Классификация систем

Классификации всегда относительны. Так, в детерминированной системе можно найти элементы стохастичности, и, напротив, детерминированную систему можно считать частным случаем стохастической (при вероятности равной единице).

Аналогично, если принять во внимание диалектику субъективного и объективного в системе, то станет понятной относительность разделения системы на абстрактные и объективно существующие: это могут быть стадии развития одной и той же системы.

Однако относительность классификаций не должна останавливать исследователей. Цель любой классификации – ограничить выбор подходов к отображению системы, сопоставить выделенным классам приёмы и методы системного анализа и дать рекомендации по выбору методов для соответствующего класса систем. При этом система, в принципе, может быть одновременно охарактеризована несколькими признаками, т.е. ей может быть найдено место одновременно в разных классификациях, каждая из которых может оказаться полезной при выборе методов моделирования.

Рассмотрим некоторые из наиболее важных классификаций систем.

Для выделения классов систем могут использоваться различные классификационные признаки. Основными из них считаются: природа элементов, происхождение, длительность существования, изменчивость свойств, степень сложности, отношение к среде, реакция на возмущающие воздействия, характер поведения и степень участия людей в реализации управляющих воздействий. Классификация систем представлена в табл. 10.1.

По природе элементов системы делятся на реальные и абстрактные.

Реальными (физическими) системами являются объекты, состоящие из материальных элементов. Среди них обычно выделяют механические, электрические (электронные), геологические, биологические, социальные и другие подклассы систем и их комбинации.

Абстрактные системы составляют элементы, не имеющие прямых аналогов в реальном мире. Они создаются путём мысленного отвлечения от тех или иных сторон, свойств и (или) связей предметов и образуются в результате творческой деятельности человека. Иными словами, это продукт его мышления. Примером абстрактных систем являются системы уравнений, идеи, планы, гипотезы, теории и т.п.

В зависимости от происхождения выделяют естественные и искусственные системы.

Естественные системы, будучи продуктом развития природы, возникли без вмешательства человека. К ним можно отнести, например, климат, почву, геологическую среду, ландшафт, живые организмы, солнечную систему и др. Появление новой естественной системы – большая редкость, но изученных очнь мало.

Искусственные системы – это результат созидательной деятельности человека, со временем их количество увеличивается.

По длительности существования системы подразделяются на постоянные и временные. К постоянным обычно относятся естественные системы, хотя с точки зрения диалектики все существующие системы – временные.

Таблица 10.1. Классификация систем

Классификационные признаки Классы
Природа элементов Реальные (физические) Абстрактные
Происхождение Естественные Искусственные
Длительность существования Постоянные Временные
Изменчивость свойств Статические Динамические
Степень сложности Простые Сложные Большие
Отношение к среде Закрытые Открытые
Реакция на возмущающие воздействия Активные Пассивные
Характер поведения С управлением Без управления
Степень связи с внешней средой Открытые Изолированные Закрытые Открытые равновесные Открытые диссипативные
Степень участия в реализации управляющих воздействий людей Технические Человеко-машинные Организационные

К постоянным относятся искусственные системы, которые в процессе заданного времени функционирования сохраняют существенные свойства, определяемые предназначением этих систем.

В зависимости от степени изменчивости свойств системы делятся на статические и динамические.

К статическим относятся системы, при исследовании которых можно пренебречь изменениями во времени характеристик их существенных свойств. Статическая система - это система с одним состоянием.

В отличие от статических, динамические системы имеют множество возможных состояний, которые могут меняться как непрерывно, так и дискретно.

В зависимости от степени сложности системы делятся на простые, сложные и большие.

Простые системы с достаточной степенью точности могут быть описаны известными математическими соотношениями. Особенность простых систем - в практически взаимной независимости от свойств, которая позволяет исследовать каждое свойство в отдельности в условиях классического лабораторного эксперимента и описать методами традиционных технических дисциплин (электротехника, радиотехника, прикладная механика и др.). Примерами простых систем могут служить отдельные детали, элементы электронных схем и т.п.

Сложные системы состоят из большого числа взаимосвязанных и взаимодействующих элементов, каждый из которых может быть представлен в виде системы (подсистемы). Сложные системы характеризуются многомерностью (большим числом составленных элементов), многообразием природы элементов, связей, разнородностью структуры.

К сложной можно отнести систему, обладающую, по крайней мере, одним из ниже перечисленных признаков:

- систему можно разбить на подсистемы и изучать каждую из них отдельно;

- система функционирует в условиях существенной неопределённости и воздействия среды на неё, обусловливает случайный характер изменения её показателей;

- система осуществляет целенаправленный выбор своего поведения.

Сложные системы обладают свойствами, которыми не обладает ни один из составляющих элементов. Сложными системами являются живые организмы, в частности человек, ЭВМ и т.д. Особенность сложных систем заключается в существенной взаимосвязи их свойств.

Большие системы - это сложные пространственно-распределённые системы, в которых подсистемы (их составные части) относятся к категориям сложных. Дополнительными особенностями, характеризующими большую систему, являются:

- большие размеры;

- сложная иерархическая структура;

- циркуляция в системе больших информационных, энергетических и материальных потоков;

- высокий уровень неопределённости в описании системы.

Большинство геологических систем, ПТК, автоматизированные системы управления, воинские части, системы связи, промышленные предприятия, отрасли промышленности и т.п. могут служить примерами больших систем.

По степени связи с внешней средой системы делятся на изолированные, закрытые, открытые равновесные и открытые диссипативные.

Изолированные системы не обмениваются со средой энергией и веществом. Процессы самоорганизации в них невозможны. Энтропия изолированной системы стремится к своему максимуму.

Закрытые системы не обмениваются с окружающей средой веществом, но обмениваются энергией. Они способны к фазовым переходам в равновесное упорядоченное состояние. При достаточно низкой температуре в закрытой системе возникает кристаллический порядок.

Открытые системы обмениваются с окружающей средой энергией и веществом. Изменение энтропии открытой системы ds определяется алгебраической суммой энтропии, производимой внутри системы dрs, и энтропии, поступающей извне или уходящей во внешнюю среду dcs т.е.

ds = dр s + dс s.

В состоянии прочного равновесия - стационарном состоянии, ds = 0.

Открытые системы в значительной мере характеризуются скоростью производства энтропии в единице объёма - функцией диссипации (рассеяния), которая по определению

 

dр s /dt =ò s dV,

где s - функция диссипации; t- время; V- объём.

К открытым равновесным относятся также системы, которые при отклонении от стационарного состояния возвращаются в него экспоненциально, без осцилляции. По теории И. Пригожина, для открытых равновесных систем в стационарных состояниях функция диссипации имеет минимум, т.е. соблюдается принцип экономии энтропии.

Открытые диссипативные системы возникают в результате кооперативных процессов. Их поведение не линейно. Механизм образования диссипативной структуры: подсистемы флуктуируют, иногда достигая точки бифуркации, после которой может наступить порядок более высокого уровня. Переходы в состояния динамической упорядоченности, когерентности, автоколебаний и автокаталитических реакций и в результате роста флуктуации являются своего рода фазовыми переходами.

Изолированных и закрытых систем фактически в природе не существует. Можно проанализировать пример любой из таких систем и убедиться, что нет экранов сразу от всех форм материи или энергии, что любая система быстрее - медленнее развивается или стареет. В вечности понятия «быстро» и «медленно» смысла не имеют, поэтому, строго говоря, существуют только открытые диссипативные системы, близкие к равновесию, условно названные открытыми равновесными системами. Изолированные и закрытые системы - заведомо упрощенные схемы открытых систем, полезные при приближённом решении частных задач.

В зависимости от реакции на возмущающие воздействия выделяют активные и пассивные системы. Активные системы способны противостоять воздействиям среды (сейсмике, потокам ветра, воды, снежных лавин и т.п.) и сами могут воздействовать на неё. У пассивных систем это свойство отсутствует.

По характеру поведения вс е системы подразделяются на системы с управлением и без управления. Класс систем с управлением образуют системы, в которых реализуется процесс целеполагания и целеосуществления. Примером систем без управления может служить Солнечная система, в которой траектории движения планет определяются законами механики.

В зависимости от степени участия человека в реализации управляющих воздействий системы подразделяются на технические, человеко-машинные, организационные и природные.

К техническим относятся системы автоматического управления (регулирования), представляющие собой комплексы устройств для автоматического изменения, например, координат объекта управления, с целью поддержания желаемого режима его работы. Они могут быть как адаптивными, т.е. приспосабливающимися к изменению внешних и внутренних условий в процессе работы путём изменения своих параметров или структуры для достижения требуемого качества функционирования, так и неадаптивными.

Примерами человеко-машинных (эргатических) систем могут служить автоматизированные системы управления различного назначения. Их характерной особенностью является то, что человек сопряжён с техническими устройствами, причём окончательное решение принимает человек, а средства автоматизации лишь помогают ему в обосновании правильности этого решения.

К организационным системам относятся социальные системы - группы, коллективы людей, общество в целом.

Природные системы обладают всеми свойствами систем, механизмы их развития в согласии с пока далеко не разгаданными законами природы.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: