Системы дифференциальных уравнений

Решение систем дифференциальных уравнений встречается во многих инженерных и научных задачах. В большинстве случаев алгоритмы решения подобных задач можно эффективно распараллелить для обработки на кластерном компьютере. В качестве примеров можно упомянуть такие задачи, как молекулярные модели сплошных сред в статистической физике, инженерные расчеты по распределению нагрузок в сложных конструкциях, модели N тел (например, расчеты движения космических аппаратов, динамика звездного диска Галактики), газодинамика сплошных сред (особенно, если исследуется многокомпонентная среда), электродинамика и др.

Однако следует учитывать, что параллельность задачи определяется не только ее физическим смыслом, но и выбранным численным алгоритмом. Например, всем известный метод прогонки практически не поддается распараллеливанию. Если единственный или предпочтительный метод решения вашей задачи - метод прогонки, то затраты на распараллеливание алгоритма скорее всего превысят ожидаемый результат. С другой стороны, метод Монте-Карло идеально подходит для кластерного компьютера. Причем, чем больше процессоров будет в кластере, тем эффективнее будет решаться задача. Практически все варианты явных разностных схем решения дифференциальных уравнений успешно распараллеливаются.

Исходя из всего вышесказанного, можно утверждать, что использование кластера на физическом факультете позволит оптимизировать процесс расчета моделей сложных структур, таких как отдельные молекулы (в частности белки), смесей различных веществ, кристаллов и т.д.

Принципы построения кластера.

Архитектура кластера должна обеспечивать масштабируемость ПО при увеличении количества узлов, т. е. прирост производительности при добавлении новых вычислительных модулей. Для этого важно правильно выбрать конфигурацию кластера в зависимости от профиля обмена данными между экземплярами программы, запущенными на разных узлах. Здесь нужно учитывать общий объем пересылаемых данных, распределение длин сообщений, использование групповых операций и т. п.

Каждый узел работает под управлением своей копии стандартной операционной системы, в большинстве случаев — Linux. Состав и мощность узлов могут быть разными в рамках одного кластера, однако чаще строятся однородные кластеры. Выбор конкретной коммуникационной среды (интерконнекта) определяется многими факторами: особенностями решаемых задач, доступным финансированием, требованиями к масштабируемости и т. п. В кластерных решениях применяются такие технологии интерконнекта, как Fast Ethernet, Gigabit Ethernet, SCI, Myrinet, QsNet, InfiniBand. Исходя из всего вышесказанного, можно утверждать, что использование кластера на физическом факультете позволит оптимизировать процесс расчета моделей сложных структур, таких как отдельные молекулы (в частности белки), смесей различных веществ, кристаллов и т.д.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: