Схема формирования оптического изображения

 

Существует два фактора, которые влияют на структуру и качество изображения в оптической системе: дифракция и аберрации. Эти факторы действуют совместно. Если аберрации малы и преобладает дифракция, то такие системы называются дифракционно-ограниченными. Если аберрации велики, и дифракция теряется на фоне аберраций, то такие системы называются геометрически-ограниченными (формирование изображения вполне корректно описывается с позиций геометрической оптики, без привлечения теории дифракции).

Рисунок 8 - Схема формирования оптического изображения.

 

Рассмотрим формирование изображения некоторой точки (рис.8). Гомоцентрический пучок лучей выходит из точки A0, и после идеальной оптической системы сходится в точке A¢0. Наряду с пучками лучей можно также рассматривать сферические волновые фронты Sw и S¢w. Действие реальной оптической системы сводится к следующим факторам:

- преобразование расходящегося пучка лучей (волнового фронта) в сходящийся,

- ограничение размеров проходящего пучка лучей или волнового фронта,

- ослабление интенсивности (энергии) проходящего поля,

- нарушение гомоцентричности пучка или сферичности волнового фронта, то есть изменение фазы проходящего поля.

Рассмотрим поле  на выходной сфере (в области выходного зрачка). Волновой фронт близок к выходной сфере, но отличается от нее на величину волновой аберрации. Поле на волновом фронте . Оптический путь из центра предмета до волнового фронта для всех лучей одинаковый, так как волновой фронт – поверхность равного эйконала. Поскольку для формирования изображения важна разность фаз между выходной сферой и волновым фронтом, а не сама фаза, то можно принять, что фаза волнового фронта равна нулю j=0. При отсутствии аберраций амплитуда поля единичная, следовательно поле на волновом фронте . Набег фазы от выходной сферы до волнового фронта:

,                                                                                           (21)

где  – расстояние между волновым фронтом и выходной сферы вдоль луча.

Поле на выходной сфере математически можно представить в виде:

,                                      (22)

где  – волновая аберрация,  – зрачковая функция.

В выражении (22) учитывается одновременно ограничение пучков и наличие аберраций.

Зрачковая функция (pupil function, PF) показывает влияние оптической системы на прохождение электромагнитного поля от точки предмета до выходного зрачка и в общем случае в канонических координатах описывается выражением:

,                                      (23)

где  – канонические зрачковые координаты,  – функция пропускания по зрачку,  – область зрачка в канонических координатах.

Теперь нужно перейти от поля на выходном зрачке к полю на изображении. Вблизи изображения геометрическая оптика не применима, поэтому для описания поля на изображении следует использовать теорию дифракции.

Рисунок 9 - Формирование комплексной амплитуды в плоскости изображения.

 

Для вычисления комплексной амплитуды поля в плоскости изображения применим принцип Гюйгенса в форме интеграла Гюйгенса-Френеля. Рассматриваемая область находится вблизи центра выходной сферы (рис. 9):

.                                                            (23)

Используя зрачковую функцию, выражение (9.23) можно записать в виде:

.                                                     (24) Поскольку  и,  то множитель  можно представить в виде . Множитель , следовательно его можно вынести за интеграл, и не учитывать, так как нас интересует только относительное распределение комплексной амплитуды. Тогда выражение (24) преобразуется так:

                                                        (25)

можно выразить через  и  (рис. 10).

Рисунок 10 - Связь   с радиусом выходной сферы   и расстоянием  

от выходной сферы до точки  

 

Отрезок , причем  – для крайнего луча, а для остальных лучей: , . Теперь интеграл (25) можно записать так:

.                                               (26)

Введем канонические (приведенные) координаты на предмете и изображении:


 .                                                         (27)

Тогда в канонических координатах получим:

.                                              (28)

Так как зрачковая функция вне зрачка равна нулю, интегрирование происходит внутри зрачка. Комплексная амплитуда в изображении точки в канонических координатах, как следует из выражения (28), связана со зрачковой функцией через обратное преобразование Фурье:

.                                                                       (29)

Комплексная амплитуда поля в изображении точки есть обратное Фурье-преобразование от зрачковой функции в канонических координатах.

Функция рассеяния точки – это распределение не амплитуды поля, а интенсивности, то есть квадрата модуля комплексной амплитуды . Тогда для ФРТ можно получить следующее выражение:

.                                                                      (30)

Оптическую передаточную функцию также можно выразить в канонических координатах:

,                                                                           (31)

где  – канонические пространственные частоты:

                                                                       (32)

Канонические частоты безразмерные: . В этих координатах получаем простую связь зрачковой функции с оптической передаточной функцией:


.                                                               (33)

Это выражение в соответствии со свойством преобразования Фурье можно представить через автокорреляцию зрачковой функции:

,                         (34)

где  – площадь зрачка в канонических координатах.


ЛИТЕРАТУРА

 

1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. – М.: Машиностроение, 2004

2. Дубовик А.С. Прикладная оптика. – М.: Недра, 2002

3. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002





Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: