Сучасні методи пробопідготовки

Стандартні методики для визначення діоксинів, розраховані на високу відтворюваність є надто трудоємними і на практиці рідко використовуються в повному обсязі. Для того, аби задовільнити потребу на проведення екологічних досліджень, існуючі методики вдосконалюються і створюються нові методи аналізу.

Одним із таких вдосконалень стало створення автоматичної системи пробоочистки (Power-Prep, Fluid Management Systems, Inc.). ця система значно понижує вплив людського фактору на якісь результатів, а використання фабричних одноразових колонок із сорбентами практично повінстю нівелює артефакти і підвищує відтворюваність. На жаль, система на п’ять проб має вартість близько $70000, що поряд з її низькою надійністю практично повність виключає її використання на теренах СНД.

Найбільш значним вдосконаленням процедури пробопідготовки при аналізі ПХДД/ПХДФ в СНД стало використання у лабораторній практиці вугільних мікро колонок ФАС-МД російського виробництва. Це дозволило вирішити проблему відділення планарних речовин від жиру та інших компонентів матриці і позбавитися стадії упарювання толуолу.

Іншим великим досягненням аналітичної хімії стало створення метода екстракції в субкритичних умовах, тобто в інтервалі температур між температурою кипіння розчинника і критичною температурою при тиску не менше тиску рівноважної пари розчинника.

Відомо, що збільшенню ефективності рідинної екстракції з твердих матриць сприяє підвищення температури і високий градієнт концентрації, для чого на практиці використовують кип’ятіння з оберненим холодильником, екстракція кількома порціями розчинника чи екстракція в апараті Сокслета. Метод екстракції в субкритичних умовах дозволив скоротити тривалість екстракції від кількох діб до кількох хвилин.

В загальному випадку, установка для субкритичної екстракції є ВЕРХ системою, в якій колонка з нерухомою фазою замінена картриджем зі зразком, вміщеннм в термостат газового хроматографа. Тиск в системі регулюється вихідним краном, для охолодження перегрітого розчинника достатньо використовувати сталевий капіляр довжиною 50 см, вміщений у холодну воду. Постійна подача чистого розчинника створює високий градієнт концентрацій речовин, які відокремлюємо. Відносна простота обладнання (для роботи можна використовувати частини морально застарілих приладів) і висока перспективність стали причиною швидкого розвитку цього методу.

 



Методи аналізу

 

На сьогодні основними методами визначення діоксини залишаються газо-різинна хроматографія і хромато-мас-спектрометрія.

 

Рис.5. Загальна схема аналізу проби ПХДД/Ф



Методи детоксикації

 

Як було зазначено вище специфіка токсичності діоксинів полягає в тому, що серйозну небезпеку являють лише заміщені галогеном в положенні 2,3,7,8 похідні ПХДД/ПХДФ. Всі інші, з врахуванням концентрацій, в яких вони можуть знаходитись в оточуючому середовищі, не являють серйозної небезпеки, тобто для детоксикації достатньо видалити один із чотирьох латеральних атомів галогену.

Звичним методом знищення особливо шкідливих речовин є їх руйнація під дією високих температур (спалювання чи піроліз). Але у випадку хлорованих органічних речовин високотемпературні процеси є основними джерелами забруднення оточуючого середовища діоксинами.

Сьогодні запропоновано ряд низькотемпературних матодів деструкції. Всі вони відомі достатньо давно, але, з різних причин, поки що жоден з них не знайшов практичного використання, тому нижче наведені лише короткі описи.

 

Табл. 9. Нетермічні методи детоксикації ПХДД/ПХДФ

Процес Ступінь розкладу, % Вплив на оточуюче середовище
Фотоліз >99,8 Не впливає
Радиоліз 97 Радіація, утворення малохлорованих діоксинів
Гідродехлорування >99 Утворення токсичних побічних продуктів
Дехлорування >99 Не впливає
Каталітичне окиснення >99 Потребує високих температур і тиску
Озонування 97 Залишки продуктів реакції
Розклад йодидом хлора 92 Утворення хлорорганічних залишків

 

Найбільш ефективним і безпечним із цих методів можна вважати фотоліз, який є основним шляхом деградації ПХДД і ПХДФ в оточуючому середовищі. Діоксини поглинають електромагнітні хвилі довжиною більше 290 нм і можуть піддаватися фотолізу. Найшвидше (кілька хвилин) фотоліз діоксинів відбувається в органічних розчинниках. В чистій воді фотоліз значно понижується. Період напіврозпаду під дією сонячного світла складає 6-8 годин. Фотолізу у водному середовищі сприяють добавки апротонних розчинників. Також фотоліз можливий у газовій фазі, на поверхні твердих часток і у воді.

Механізм фотолізу та його продукти до кінця не вивчені. Вказують на вплив матриці та агрегатного стану, що не дає можливості повного використання лабораторних результатів для опису процесів у навколишньому середовищі. Процес фотодехлорування в розчинах, в тому числі і водних, описується кінетичним рівнянням першого порядку і приводить переважно до відщеплення атома хлору з латерального положення.

Лужне дегідрування субстратів, забруднених ПХДД/ПХДФ, вважається найбільш перспективним серед хімічних методів як для рідких, так і для твердих матеріалів. Де галогенування можна здійснювати за допомогою сумішей водних розчинів солей лужних металів і поліспиртів. Реакційну суміш витримують при температурі 140-2200С, ступінь деструкції діоксину сягає 99,95%. Висока ефективність дегазації ПХДД/ПХДФ помічена при використанні поліетиленгліколяту калію, який дозволяє провести дехлорування до утворення KCl та інших відносно нетоксичних продуктів. В залежності від температурного режиму і часу реакцій ефективність деструкції ПХДД і ПХДФ може сягати 99,9%.

Радіоліз – метод базується на розкладанні діоксинів під дією -випромінювання. Радіоліз призводить до часткового видалення атомів галогену з молекули ПХДД/ПХДФ, не руйнуючи основну "діоксинову" структуру.

Озоноліз – полягає в пропусканні озону через суспензію, яка містить ПХДД/ПХДФ. Розклад відбувається лише в лужних умовах (рН=10). Через 48 годин при кімнатній температурі відбувається руйнація 93% 2,3,7,8-ТХДД, а при 50 °С за 30 хв – 94%.

Метод хлорйодидного розкладу передбачає використання солей четвертинних амонієвих основ. Такі хлор йодиди призводять до розриву кисневих зв’язків в молекулі діоксину за м’яких умов при 200С з утворенням хлорфенолів, фенолів і 2-феноксифенілу. Для дегазації використовують рочзин, що містить 5-10 г/л хлор йодидів четвертинних амонієвих солей. Ефективність методу – 70% за 24 години.

Гідразиновий метод заснований на взаємодії діоксинів з водними розчином гідразину, який має в структурі молекули етильну групу чи утворює її в процесі реакції. Обробка матеріалів. Забруднених діоксанами, здійснюється при 20-200°С під тиском 15 атмосфер протягом 15-480 хвилин. В якості каталізаторів використовують метали VIII групи чи випромінювання УФ. Одноразова обробка дає 90-98% ефект.

Біотичний та абіотичний розклад. Цей напрямок є порівняно новим, але напрочуд перспективним. В основному роботи проводили з 2,3,7,8-ТХДД. Залишається суперечливим питання щодо вкладу мікроорганізмів в біорозклад і видалення ТХДД з оточуючого середовища. Вважають, що відбувається або кометаболізм цієї сполуки, або його використовують в якості джерела вуглецю. Доведений мікробіологічний розклад 2,3,7,8-ТХДД чистими бактеріальними культурами з періодом напіврозкладу 1 рік. Останнім часом в серії експериментів з культурою псевдо монад Alcaligenes denitrificans був встановлений швидкий розклад 2-МХДФ, повільний – 2,8-ДХДФ і відсутність розкладу 1,3,7,8-ТХДФ.

Зрозуміло, що найкращим засобом боротьби з діоксиновими забрудненнями є зниження ймовірності утворення діоксанів у відповідних технологічних стадіях і видалити діоксани з продукції. Так, колективом професора Іпполітова Є.Г. при РАН були розроблені нові без хлорні дезинфікуючі суміші широкого спекру дії на основі пер оцтової кислоти та перексоду водню, нові технології безхлорного пероксидного відбілювання текстильних виробів тощо.



Висновок

 

Як бачимо, діоксини відносяться до когорти стійких органічних забруднювачів, а це значить, що вони дуже повільно детоксикуються у природі, тим самим збільшуючи ризик потрапляння їх до організму людини. Тому, з метою попередження, слід розробити низку заходів направлених на постійний моніторинг середовища на вміст цих сполук.

 



Література

1. Диоксин. Медико-экологически аспекты. Под редакцией проф. П.Е. Шкодича, Москва, 1997 г.2. Румак В.С., Поздняков С.П., Умнова Н.В. и др. Диоксины-супертоксиканты XXI века.М.:19983. Гибс Л.М. Правда о диоксинах. Иркутск, 1998 г.4. Веб-сайт екологічного проекта "Экологическая геохимия", http://ecology.icm.ac.ru/.

5. Клюев Н.А. Контроль суперэкотоксикантов в окружающей среде и источники их появления // ЖАХ. - 1996. - Т.51, №2. - C.163-172.

6. Experiments on the mobility of 2,3,7,8-tetrachlorodibenzo- p -dioxin at Times Beach, Missouri / R.A. Freeman, F.D. Hileman, R.W. Noble, J.M. Schroy In: J.H. Exner ed. // Solving Hazardous Waste Problems, ACS Symposium Series Num. 338. - 1987.

7. Федоров Л.А., Мясоедов Б.Ф. Диоксины как экологическая опасность: ретроспектива и перспективы // Успехи химии. - 1990. - т.59, №11. - С. 1818-1823. діоксин пробопідготовка хроматографія детоксикація

8. Федоров Л.А. Диоксины как экологическая опасность: ретроспектива и перспектива. - М.: Наука, 1993. - 265 с.

9. Майстренко В.Н., Хамитов Р.З., Будников Г.К. Эколого-аналитический мониторинг супертоксикантов. - М.: Химия, 1996. - 319 с.

10. Антонюк В.В., Позняков С.П., Ермаков С.П. Современные подходы к интегральной оценке изменений состояния здоровья населения под воздействием неблагоприятных факторов внешней среды. М., 1998. – 324 с.

11. Медицинская экотоксикология и экологическая химия диоксинсодержащих эко-токсикантов. Книга 2, часть III / Под. ред. В.С. Румака и Н.А. Клюева. - Б.м., 1997. - 372 с.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: