Импульсный нейтрон-нейтрон каротаж

Импульсный нейтрон-нейтронный каротаж основан на многомерной регистрации нестационарных потоков тепловых нейтронов одновременно на двух зондах в скважинах любых категорий. За счет применения импульсных генераторов нейтронов измеряется пространственно-временное распределение тепловых нейтронов в скважинах, в результате чего достигается повышенная достоверность и однозначность решения традиционных задач нефтепромысловой и нефтеразведочной геофизики.

В ИННК применяется измерительная скважинная установка, состоящая из импульсного скважинного генератора нейтронов и расположенного на некотором фиксированном расстоянии (длина зонда) от него детектора нейтронов.

Принцип действия аппаратуры основан на облучении горных пород импульсами быстрых нейтронов и анализе временного распределения плотности тепловых нейтронов в зависимости от характера насыщения и элементного состава горных пород.

Принцип работы скважинного генератора нейтронов следующий. Мишень, представляющая собой один из легких элементов (дейтерий, тритий, бериллий, литий и др.), бомбардируется потоком ускоренных заряженных реакций 2D (d, n) 3He и 3T (d, n) 4He бомбардировки потоком ионов дейтерия (дейтонов) или трития.

Основными конструктивными узлами генератора нейтронов являются ускорительная трубка и источник питания высокого напряжения. Ускорительная трубка представляет собой стеклянный баллон, заполненный дейтерием (изотопом водорода 2Н).

Регистрируемыми характеристиками полей излучений в скважине являются скорости счета импульсов в узких временных окнах (32 мкс) для двух детекторов тепловых нейтронов расположенных на разных расстояниях от импульсного источника нейтронов энергией 14 МэВ. Временная база регистрации 32-1984 мкс. Частота срабатывания излучателя нейтронов жестко задана и составляет 20 Гц.

Управление работой прибора происходит путем подачи в 1-ю жилу кабеля положительных импульсов, формируемых ADSP 350h, при помощи одного плеча схемы «Манчестер» БУСП.

По запросу с компьютера (ADSP) станции производится запуск генератора нейтронов. Каждый импульс запуска начинает измерительный цикл, длящийся 200 мс. Цикл начинается с запуска трубки генератора нейтронов. Генератор испускает в течение 2 мкс быстрые нейтроны с энергией 14 МэВ. Взаимодействуя с окружающей средой нейтроны, замедляются до уровня тепловых энергий. Два детектора ближний (малый зонд) и дальний (большой зонд), зондовые расстояния соответственно L1=380 мм и L2=670 мм, регистрируют тепловые нейтроны. Двухзондовая конструкция прибора обеспечивает компенсацию скважинных условий. Измерительный цикл заканчивается передачей на ADSP станции зарегистрированных временных спектров (число импульсов за время 2048 мкс) для двух нейтронных детекторов.

Непосредственно измеряемыми параметрами являются величины обратные декременту временного затухания скорости счета импульсов для двух зондов t1 и t2 в интегральном временном окне от заданной начальной задержки до конца временной базы регистрации (время жизни тепловых нейтронов) и скорости счета импульсов в том же временном окне (только для ручной настройки).

В станции МЕГА реализовано одновременно два варианта измерения:     

. Автоматическое определение параметров t1 и t2 с временными задержками 256 и 512 мкс.

Таблица 4.2

Шифр параметра t Задержка, мкс. Зонд
TP11 t1 256 Малый зонд
TP21 t2 256 Большой зонд
TP12 t1 512 Малый зонд
TP22 t2 512 Большой зонд

 

. Определение параметров t1 (TP1) и t2 (TP2) и скоростей счета INT1, INT2 в каналах малого и большого зондов с временными задержками, установленными оператором. Параметры SPC1 и SPC2 являются спектрами распределения импульсов во всем временном окне регистрации по малому и большому зонду.

Дифференциация пород, определение нефтенасыщенности и пористости осуществляется по основным нейтронным параметрам - среднему времени жизни и коэффициенту диффузии тепловых нейтронов. Как известно, нефть и пресная вода обладают близкими значениями времени жизни тепловых нейтронов (t н = 206 мкс, tв = 204 мкс), но с увеличением концентрации NaCl, в пластовых водах до 50 г./л среднее время жизни нейтронов в воде уменьшается до 100 мкс [16], на этом различии нейтронных параметров основана методика определения нефтенасыщенности ИННК. Оценка коэффициента нефтенасыщенности Кн пластов методом ИННК возможна, по оценкам различных авторов, при выполнении следующих условий:

·   минерализация пластовой воды не менее 30¸70 г./л NaCl; с уменьшением минерализации вод точность определения Кн уменьшается;

·   отсутствие зоны проникновения фильтрата промывочной жидкости и восстановление минерализации пластовой воды в этой зоне до первоначального или до известного значения.

Уровень минерализации пластовой воды по NaCl является определяющим фактором достоверной оценки насыщенности пластов. По данным различных источников определение Кн методами ИННК осуществляется при Кп=10¸15% (если Св=200÷250 г./л NaCl) и Кп=15¸20% (если Св=100÷150 г./л NaCl). В неглинистых высокопористых коллекторах оценка Кн возможна при минерализации Св=30÷70 г./л NaCl.

Для Западной Сибири характерны как раз низко минерализованные пластовые воды, что ограничивает применение ИННК с целью разделения нефти и воды. Однако ИННК весьма отчетливо позволяет определить газонасыщенные интервалы пластов-коллекторов. Многие залежи нефти в Западной Сибири, в том числе на Приобском месторождении, имеют газовые шапки, кроме того, нефть имеет высокий газовый фактор. В процессе эксплуатации пластовое давление залежи снижается, и растворенный газ выделяется в свободную фазу, образуя тем самым техногенные газовые залежи. Так как при эксплуатации нефтяного пласта прорыв в скважину газа из вышерасположенных интервалов осложняет процесс добычи и крайне нежелательно, то применение ИННК весьма целесообразно при исследовании объектов с вероятностью наличия газонасыщенных прослоев.

Краткие технические характеристики прибора АИНК-43:        

длина, мм                                   3200

диаметр, мм                                        43

максимальное раб давление, МПа 100

диапазон раб температур                   +5…+120°С

масса скважинного прибора, кг         15

длина секции излучателя нейтронов 1800 мм

длина секции блока регистрации       1725 мм


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: