Изучение фотосинтезирующих бактерий

 

Важным направлением в физиологии микробов в XX в. было изучение способности некоторых групп микроорганизмов к фотосинтезу – фотолитотрофии и фотоорганотрофии. Общебиологическое значение изучения фотосинтеза состояло в установлении биохимии и кинетики этого важнейшего биологического явления.

Начало обнаружению разнообразия физиологических особенностей фотосинтезирующих микроорганизмов было положено открытием в середине XIX в. зеленых бактерий, а несколько позднее – пурпурных. Г. Молиш (1907) выявил способность пурпурных бактерий расти на органических веществах в темноте и отсутствие выделения ими кислорода. А. Будер (1919) и В. Бевендамм (1924) высказали предположение, что фотосинтезирующие микроорганизмы способны как к фотосинтезу, так и к хемосинтезу. Исследования К. Ван‑Ниля показали, что фотосинтезирующие микроорганизмы осуществляют фотосинтез в присутствии окисляемых субстратов – минеральных и органических – и без выделения кислорода. Он же составил уравнение бактериального фотосинтеза.

СО2 + 2Н2А → СН2О + Н2О + 2А.

Исследованиями К. Ван‑Ниля (1936), а позднее X. Гаффрона, Дж. Фостера и Д.И. Сапожникова было показано, что специфичность бактериального фотосинтеза определяется именно природой доноров водорода (электрона). Органические соединения могут выполнять функции либо источника водорода (электрона), либо углерода, либо обе эти функции одновременно. Те же функции (иногда в присутствии сульфидов и тиосульфатов) могут нести кислоты цикла Кребса.

В ходе изучения пигментов фотосинтезирующих бактерий, начавшегося с открытия в 1952 г. Г. Шахманом, А. Парди и Р. Стениером хроматофоров, было установлено, что они являются мембранными структурами – ламеллами, которые за уплощенную форму были названы С. Менке (1962) тилакоидами. Среди них были дифференцированы ламеллы стромы и ламеллы гран, в которых сконцентрированы бактериохлорофиллы. Таким образом, в 50‑60‑е годы стало известно, что фотосинтезирующий аппарат микроорганизмов представляет собой фосфолипопротеиновую структуру и содержит пигменты и переносчики электронов, т. е. дыхательную цепь. Иными словами, система энергетического обмена дополнена у них системой фотосинтезирующих пигментов.

 

 

Изучение азотфиксирующих бактерий.

 

Видное место в развитии физиологии микроорганизмов заняли исследования азотфиксирующих микроорганизмов.

В 1901 г. М. Бейеринк и в 1903 г. Дж. Липман выделили три аэробных азотфиксатора – Azotobacter chroococcum, A. agile и A. vinelandii. Позднее азотфиксирующая способность была открыта более чем у 80 видов бактерий, у нескольких видов актиномицетов, спирохет, дрожжей и дрожжеподобных организмов, плесневых и микоризных грибов, а также более чем у 40 видов синезеленых водорослей.

Основную роль в открытии столь широкого распространения способности к азотфиксации и в установлении ее биохимии сыграло применение изотопа азота – N15. Последовательная смена воззрений на химизм азотфиксации была следующей. Еще до открытия возбудителей азотфиксации А. Готье и Ш. Друэн (1888) предположили, что в процессе связывания азота молекулярный азот сначала окисляется в азотистую, а затем в азотную кислоту. В 1893 г. С.Н. Виноградский высказал мысль о том, что азот восстанавливается выделяющимся водородом с образованием аммиака. Открытие аэробного A. chroococcum было косвенным подтверждением возможности окислительного пути.

Более распространенной, однако, оказалась гипотеза о восстановительном характере процесса. При этом предполагалось либо непосредственное связывание азота с дикарбоновыми кислотами, превращающимися в аминокислоты (М. Герлах, Дж. Фогель, 1902; Дж. Липман, 1903); либо, согласно теории Г. Виланда (1922; Нобелевская премия, 1927), присоединение молекулой азота атома водорода с образованием диимида и гидразина; либо, согласно взглядам С.П. Костычева (1925–1931), фиксация молекулярного азота азотобактером происходит внеклеточно путем присоединения водорода к азоту при участии восстановительных ферментов; либо, наконец, по С.Н. Виноградскому (1930), молекулярный азот восстанавливается водородом до аммиака (гидрогенизация). Наряду с этим существовала гипотеза (Д. Блом, 1931), что промежуточным продуктом фиксации является гидроксиламин. Эта идея получила затем развитие в лаборатории А. Виртанена (40‑е годы; Нобелевская премия, 1945), который полагал, что гидроксиламин, соединяясь с щавелевой кислотой, образует оксим, превращающийся затем в аспарагиновую кислоту. Эта гипотеза была проверена П. Вильсоном (1954) и не получила подтверждения.

В 1941 г. в исследованиях Р. Бёрриса и Ч. Миллера при изучении фиксации молекулярного азота впервые был использован тяжелый изотоп N15. Эти ученые экспериментально показали, что первым устойчивым продуктом азотфиксации является аммиак. Этот же факт был установлен и на бесклеточных ферментных системах (Л. Мортенсон и др., 1962; Д. Карнахан и др., 1963; А.А. Имшенецкий и др., 1963; и др.). Однако механизм восстановления N2 до NH3 до сегодняшнего дня остается предметом исследований. В настоящее время известно, что участвующие в азотфиксации ферменты представляют собой систему белковых катализаторов, содержащих в своем составе молибден и железо. В клубеньковых бактериях имеется аналогичный фермент – легоглобин, катализирующий перенос кислорода. Для активного функционирования этих ферментов необходим витамин В12 (В.Л. Кретович, В.А. Яковлев и др.).

Важный научный материал был получен также в результате исследований таких почвенно‑микробиологических процессов, как денитрификация, нитрификация, окисление серы, разложение различных органических соединений и многих других процессов, представляющих собой различные формы получения энергии в мире микроорганизмов.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: