Обоснование хромосомной теории наследственности

 

Согласно законам Менделя, проявление каждого наследственного фактора не зависит от других факторов. Его анализ моно‑, ди‑ и тригибридного скрещивания экспериментально подтвердил этот вывод.

После переоткрытия менделевских закономерностей развернулось изучение этих закономерностей у всевозможных видов животных и растений, Одна из кажущихся неудач постигла У. Бэтсона и Р. Пеннета, изучавших в 1906 г. наследование окраски венчика и формы пыльцы у душистого горошка. Согласно Менделю, распределение фенотипов при дигибридном скрещивании должно подчиняться отношению 9:3:3:1. Вместо этого Бэтсон и Пеннет зарегистрировали расщепление в отношении 35:3:3:10. Создавалось впечатление, что факторы пурпурной окраски и сморщенной пыльцы имеют тенденцию при перекомбинациях задатков оставаться вместе. Это явление авторы назвали «взаимным притяжением факторов», но природу его им выяснить не удалось.

В 1909 г. к детальному изучению этого вопроса приступил Т.Г. Морган. Прежде всего, он четко сформулировал исходную гипотезу. Теперь, когда уже было известно, что наследственные задатки находятся в хромосомах, закономерно было ответить на вопрос, всегда ли будут выполняться численные закономерности, установленные Менделем? Мендель совершенно справедливо считал, что такие закономерности будут верны тогда и только тогда, когда изучаемые факторы будут комбинироваться при образовании зигот независимо друг от друга. Теперь, на основании хромосомной теории наследственности, следовало признать, что это возможно лишь в том случае, когда гены расположены в разных хромосомах. Но так как число последних по сравнению с количеством генов невелико, то следовало ожидать, что гены, расположенные в одной хромосоме, будут переходить из гамет в зиготы совместно. Следовательно, соответствующие признаки будут наследоваться группами.

 

 

Томас Гент Морган. 1866–1945.

 

 

Проверку этого предположения осуществили Морган и его сотрудники К. Бриджес и А. Стертевант в исследованиях с плодовой мушкой – дрозофилой (Drosophila melanogaster). Выбор этого объекта по многим причинам можно считать крупной удачей. Во‑первых, дрозофила имеет весьма небольшой период развития (всего 10–12 дней); во‑вторых, благодаря высокой плодовитости дает возможность вести работу с громадными популяциями; в‑третьих, может легко культивироваться в лабораторных условиях; наконец, у нее имеется всего четыре пары хромосом.

Вскоре у дрозофилы было обнаружено большое количество разнообразных мутаций, т. е. форм, характеризующихся различными наследственными признаками. У нормальных или, как говорят генетики, дрозофил дикого типа, цвет тела серовато‑желтоватый, крылья серые, глаза темного кирпично‑красного цвета, щетинки, покрывающие тело, и жилки на крыльях имеют вполне определенное расположение. У обнаруживавшихся время от времени мутантных мух эти признаки были изменены: тело, например, было черное, глаза белые или иначе окрашенные, крылья зачаточные и т. д. Часть особей несла не одну, а сразу несколько мутаций; например, муха с черным телом могла, кроме того, обладать зачаточными крыльями. Многообразие мутаций позволило Моргану приступить к генетическим опытам. Прежде всего он доказал, что гены, находящиеся в одной хромосоме, передаются при скрещиваниях совместно, т. е. сцеплены друг с другом. Одна группа сцепления генов расположена в одной хромосоме. Веское подтверждение гипотезы о сцеплении генов в хромосомах Морган получил также при изучении так называемого сцепленного с полом наследования.

Благодаря цитолого‑генетическим экспериментам (А. Стертевант, К. Бриджес, Г. Дж. Мёллер, 1910) удалось установить участие некоторых хромосом в определении пола. У дрозофилы, например, наряду с тремя парами хромосом (аутосом), не имеющих отношения к определению пола, была обнаружена пара половых хромосом. Половые хромосомы, в свою очередь оказались двух типов – длинные палочковидные X‑хромосомы и маленькие изогнутые Y‑хромосомы. Их сочетаниями и определяется пол мухи. Дальнейшие эксперименты показали, что у дрозофилы, как и у большинства млекопитающих (в том числе человека), амфибий, рыб и большинства растений попадание в зиготу двух X‑хромосом приводит к формированию женской особи, объединение же одной X‑хромосомы и одной Y‑хромосомы дает начало мужской особи[101]. Следовательно, все женские гаметы одинаковы – они несут по одной X‑хромосоме; мужские особи дают гаметы двух типов: половина содержит X‑хромосому, половина – Y‑хромосому. Поэтому при оплодотворении половина зигот получает набор хромосом XX, а половина – XY, и отношение полов равняется 1:1.

Определив, что ген окраски глаз дрозофилы локализован в X‑хромосоме, и проследив за поведением генов в потомстве определенных самцов и самок, Морган и его сотрудники получили убедительное подтверждение предположения о сцеплении генов.

Таким образом, в развитии генетики выделяются два важных этапа. Первый, базирующийся на гибридологических исследованиях, связан с открытием Менделя – доказательством наличия элементарных наследственных факторов, установлением характера взаимодействия этих факторов (правило доминантности – рецессивности) и выяснением количественных закономерностей в расщеплении признаков при скрещиваниях. Второй этап, связанный с успехами цитологических исследований, завершился доказательством того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах. В частности, генетическими методами были обнаружены четыре группы сцепления у Drosophila melanogaster, что совпадало с данными цитологических исследований. На очереди стоял вопрос о порядке расположения генов в хромосомах.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: