Микроструктурный анализ цветных сплавов

Микроструктура цветных сплавов в условиях равновесия или близких к ним может быть определена с помощью их диаграмм состояния.

2.1. Микроструктура сплавов на основе алюминия

В качестве характерных представителей деформируемых и литейных алюминиевых сплавов в работе используются соответственно литой дуралюмин марки Д1 и силумин марки АЛ2.

Рисунок 2.- Схема микроструктуры дуралюмина марки Д1 в литом состоянии. a-фаза и Q-фаза. ´340 Основу сплавов типа дуралюмин составляет система Al-Cu-Mg. В соответствии с ней медь и магний имеют ограниченную растворимость в твердом состоянии в алюминии, а избыточными фазами, выделяющимися при охлаждении из a-твердого раствора меди и магния в алюминии в связи с уменьшением растворимости

компонентов при снижении температуры являются соединения CuAl3 и Al2MgCu, называемые соответственно Q и S фазами. Поскольку магний в сплаве находится в небольшом количестве, то фаза S при используемых в работе увеличениях микроскопа в структуре не обнаруживается. Поэтому наблюдаемая микроструктура сплава марки Д1 в литом состоянии состоит из светлых зерен a-твердого раствора меди и магния в алюминии и темных включений Q-фазы (соединения СuАl2), располагающихся по границам зерен a-фазы (рисунок 2). Такую структуру дуралюмина марки Д1 можно предсказать, исходя из двойной диаграммы состояния системы Al-Сu, подобной изображенной на рис.1.

Дуралюмины, как и авиали (сплавы системы Al-Cu-Si) применяют для изготовления горячей или холодной обработкой давлением листов, труб, проволоки, плит и различных профилей.

Микроструктура силуминов соответствует двойной диаграмме состояния системы Al-Si (рисунок 3), доэвтектические сплавы состоят из первичных кристаллов a-твердого раствора кремния в алюминии и зерен эвтектики (a+b). В свою очередь, структура заэвтектических сплавов состоит из крупных первичных кристаллов - твердого раствора алюминия в кремнии в виде игл и зерен эвтектики (a+b). В соответствии с диаграммой состояния Al-Si сплав марки АЛ2, содержащий 12-13%Si, является заэвтектическим.

 

Рисунок 3.- Диаграмма состояния системы алюминий – кремний Поэтому его микроструктура состоит из более темных крупных игл b-твердого раствора алюминия в кремнии и эвтектики в виде более темных игл b-твердого раствора алюминия в кремнии на светлом поле a-твердого раствора кремния в алюминии (рисунок 4). Сплав в таком структурном состоянии обладает низким комплексом механических свойств

 

(предел прочности при растяжении sВ=130-140МПа, относительное удлинение d=1-2%).

Поэтому для повышения свойств производят модифицирование. Применительно к силуминам оно заключается в обработке перед разливкой сплава смесью фтористых и хлористых солей натрия в соотношении 2/3NaF+1/3NaCl. Это обеспечивает введение в сплав 0,1%Na, который осуществляет модифицирующее действие, затрудняя кристаллизацию b-твердого раствора алюминия в кремнии. Модифицирование вызывает смещение линий на диаграмме состояния Al-Si (см. рисунок 3). Эвтектическая точка (11,6%Si) перемещается вправо, приобретая концентрацию кремния 14,6%, в результате чего сплав становится доэвтектическим, что исключает из структуры крупные первичные иглы b-твердого раствора алюминия в кремнии и тем самым повышает пластичность. Линия эвтектического превращения снижается с 577 до 564OС, в связи с чем эвтектика (a+b) вместо грубоигольчатой становится мелкозернистой. Поэтому микроструктура сплава марки АЛ2 после модифицирования состоит из светлых первичных зерен a-твердого раствора кремния в алюминии и мелкозернистой эвтектики в виде более темных включений b-твердого раствора алюминия в кремнии на светлом поле a-твердого раствора кремния в алюминии (рисунок 5). Силумины применяются для изготовления корпусов компрессоров, картеров и блоков цилиндров двигателей и др.

 
Рисунок 4.- Схема микроструктуры силумина марки АЛ2 до модифицирования, b-фаза и эвтектика (a+b). ´250   Рисунок 5.- Схема микроструктуры силумина марки АЛ2 после модифицирования. a-фаза и эвтектика (a+b). ´250

 

2.2. Микроструктура сплавов на основе меди

В качестве характерных представителей сплавов на медной основе в работе используются сплавы марок Л68 и Л59 (латуни) и БрО10 и БрС30 (бронзы).

Микроструктура двойных низколегированных латуней в условиях равновесия определяется диаграммой состояния системы Сu-Zn. На рисунке 6 приведен фрагмент этой диаграммы, отражающей фазовые равновесия в сплавах с содержанием цинка до 50%, поскольку промышленное применение находят латуни, содержащие до 45%Zn. В соответствии с этой диаграммой состояния латуни по структуре делятся на однофазные (a-латуни), содержащие до 39%Zn и состоящие из зерен a-твердого раствора цинка в меди, и двухфазные (a+b)-латуни, содержащие от 39 до 45%Zn и состоящие из зерен a-твердого раствора цинка в меди и зерен b-твердого раствора на основе соединения CuZn.

Однофазные a-латуни обладают высокой пластичностью при нормальной (комнатной) температуре. Поэтому однофазные латуни выпускают в виде полуфабрикатов, полученных холодной обработкой давлением (штамповкой, прокаткой или протяжкой) листов, труб,

Рисунок 6.- Фрагмент диаграммы состояния системы медь-цинк лент, проволоки, из которых методом глубокой вытяжки изготавливают радиаторные трубы, снарядные гильзы, сильфоны, трубопроводы, а также производят детали (шайбы, втулки, уплотнительные кольца), не требующие высокой твердости. Холодная обработка вызывает наклеп. В наклепанном состоянии латунь с содержанием цинка 20% и выше подвержена растрескиванию по границам зерен, имеет низкую коррозионную стойкость. Поэтому ее подвергают рекристаллизационному отжигу, в результате чего однофаз-

 

ная латунь приобретает зеренную структуру с характерными для пластичных сплавов двойниками. На рисунке 7 показана микроструктура однофазной латуни марки Л68. Поскольку зерна a-фазы выходят на поверхность микрошлифа различными кристаллографическими плоскостями, степень их травимости реактивом различна и они имеют неодинаковую окраску.

Микроструктура двухфазной латуни марки Л59 в литом состоянии, представленная на рисунке 8, состоит из светлых зерен a-твердого раствора цинка в меди и темных (более богатых цинком и травящихся сильнее) зерен b-твердого раствора на базе химического соединения CuZn. Присутствие в структуре b- фазы, имеющей низкую пластичность и высокую твердость, повышает характеристики прочности латуней. Двухфазные латуни являются более пластичными при температурах выше 500ОС. Поэтому эти латуни выпускают в виде полуфабрикатов, полученных горячей обработкой давлением, - листов, прутков, труб, штамповок, из которых изготавливают втулки, гайки, тройники, штуцеры, токопроводящие детали электрооборудования и др.

 
Рисунок 7.- Схема микроструктуры однофазной латуни марки Л68 после холодной пластической деформации и рекристаллизационного отжига, a-фааза. ´440   Рисунок 8.- Схема микроструктуры двухфазной латуни марки Л59 в литом состоянии. a-фаза и b-фаза. ´440

Легированные латуни применяют в качестве деформируемых и литейных. Последние, как правило, содержат большое количество цинка и легирующих элементов.

В промышленности находят применение как двойные – оловянные, свинцовистые и др. бронзы, так и многокомпонентные, содержащие кроме основных легирующих элементов добавки свинца, цинка, фосфора и никеля.

Микроструктура двойных оловянных бронз определяется диаграммой состояния системы Сu-Sn. На рисунке 9 приведен фрагмент этой диаграммы для сплавов с содержанием олова до 30%, поскольку промышленное применение имеют сплавы, содержащие до 20%Sn. Сплошными линиями показаны границы фазовых областей равновесной системы.

В соответствии с этой диаграммой состояния бронзы по структуре делятся на однофазные, состоящие из зерен a-твердого раствора олова в меди, и двухфазные, состоящие из зерен a-твердого раствора олова в меди и зерен эвтектоида (a+d), в котором d-фаза представляет собой соединение Cu31Sn8.

Рисунок 9.- Фрагмент диаграммы состояния системы медь-олово

При очень медленном охлаждении протекает равновесная кристаллизация и граница между однофазными и двухфазными бронзами соответствует 14% олова. В реальных заводских условиях при литье в металлические и земляные формы происходит ускоренное охлаждение сплавов, в связи с чем диффузия атомов олова в меди затрудняется и сплавы ведут себя так, как если бы растворимость олова в меди была постоянной, равной 6-8%, и не менялась с температурой (пунктирные линии на рисунок 9). Исходя из этого, однофазными являются бронзы с содержанием олова не более 5-6%. Такие сплавы имеют высокую пластичность и являются деформируемыми.

Рисунок 10.- Схема микроструктуры двухфазной бронзы марки БрО10 в литом состоянии. a-фаза и эвтектоид (a+d). ´600

Бронзы, содержащие олово в большем количестве, по структуре являются двухфазными. Микроструктура двухфазной бронзы марки БрО10 состоит из темных зерен a-твердого раствора олова в меди и зерен эвтектоида (a+d) (рисунок 10). Основой эвтектоида является d-фasa (химическое соединение Сu31Sn8), на белом поле которой расположены мелкие темные выделения a-фазы. Наличие твердой и хрупкой d-фазы исключает возможность обработки давлением, поэтому такие бронзы применяют только в литом состоянии.

Для повышения свойств в оловянистые бронзы вводят различные добавки: цинк для улучшения жидкотекучести и повышения плотности отливок; фосфор как раскислитель для устранения нежелательной окиси олова SnO2, присутствующей в бронзах в виде твердых и хрупких включений; свинец для улучшения обрабатываемости резанием и повышения уровня антифрикционных свойств. Оловянистые бронзы с перечисленными добавками находят в промышленности более широкое применение, чем двойные сплавы. В качестве примера можно назвать литейные бронзы марок БрО5Ц5С5, БрО10Ф1 и др., деформируемые бронзы марок БрОФ6,5-0,4, БрОЦ4-3 и др. Оловянистые бронзы используются для изготовления паровой и водяной арматуры, подшиников скольжения, втулок, зубчатых колес, деталей приборов.

Микроструктуру свинцовистых бронз можно охарактеризовать с помощью двойной диаграммы состояния системы Сu-Pb (рисунок 11). Как видно из диаграммы состояния, свинцовистая бронза марки БрС3О с содержанием свинца 30% является доэвтектическим сплавом и его структура при нормальной (комнатной) температуре должна состоять из зерен a-твердого раствора свинца в меди и эвтектики, состоящей из a-твердого раствора свинца в меди и b-твердого раствора.

Однако эвтектика по составу совпадает с чистым свинцом (99,98%), а a-фаза - с чистой медью, поэтому можно сказать, что фактически микроструктура сплава состоит из зерен двух металлов - свинца и меди.

 

Рисунок 11.- Диаграмма состояния системы медь-свинец   Рисунок 12.- Схема микроструктуры свинцовистой бронзы марки БрС3О в литом состоянии. a-фаза и эвтектика (a+b). ´340

 

На рисунке 12 представлена микроструктура свинцовистой бронзы марки БрС3О, состоящая из светлых зерен a-фазы (фактически меди) и темных зерен эвтектики (фактически свинца). Свинцовистые бронзы являются высококачественными антифрикционными материалами и применяются для изготовления опорных и шатунных подшипников мощных турбин, авиационных моторов, дизелей и других машин.

 

2.3. Микроструктура сплавов на основе магния

Микроструктура магниевых сплавов в равновесном состоянии определяется соответствующими диаграммами состояния. В качестве примера на рисунке 13 приведена микроструктура сплава МЛ5, содержащего помимо магния 8%Al; 0,8%Zn и 0,3%Мn. Алюминий и цинк введены в сплав для упрочнения, а марганец - для повышения коррозионной стойкости.

Поскольку растворимость цинка в магнии в твердом состоянии составляет не менее 1,7% и, следовательно, все количество цинка входит в твердый раствор, не присутствуя в сплаве как самостоятельная структурная составляющая, а марганцовистая фаза при используемых в работе увеличениях ввиду малого ее количества не выявляется, то микроструктура сплава марки МЛ5 может быть определена в соответствии с двойной диаграммой состояния системы Mg-Al (рисунок 14).

 

Рисунок 13.- Схема микроструктуры сплава марки МЛ5 в литом состоянии, a-фаза и g-фазa (Mg4Al3). ´600   Рисунок 14.- Фрагмент диаграммы состояния системы магний - алюминий

 

Микроструктура сплава марки МЛ5 (см. рисунок 13) состоит из светлых зерен a-твердого раствора алюминия в магнии и более темных включений g-фазы (соединения Mg4Al3), располагающихся по границам зерен a-фазы.

2.4. Микроструктура сплавов на основе олова

Микроструктура сплавов на основе олова в равновесном состоянии также может быть определена с помощью соответствуощих диаграмм состояния, например, оловянистого баббита марки Б83 - с помощью тройной диаграммы состояния системы Sn-Sb-Cu. Микроструктура этого сплава в литом состоянии состоит из тройной эвтектики в виде основного темного поля a-твердого раствора сурьмы в олове и равномерно распределенных светлых мелких включений соединения SnSb и Cu6Sn5, светлых крупных кристаллов соединения SnSb и светлых мелких кристаллов соединения Cu6Sn5 в виде игл или звездочек (рисунок 15).

Рисунок 15ю- Схема микроструктуры баббита марки Б83 в литом состоянии. SnSb, Cu6Sn5 и тройная эвтектика (a+SnSb+Cu6Sn5). ´200 Соединение Cu6Sn5 кристаллизуется в первую очередь и равномерно распределяется в объеме жидкости, образуя своеобразную сетку, препятствующую ликвации по удельному весу легких кристаллов SnSb. При этом вся медь, находящаяся в сплаве, расходуется на образование соединения SnSb.

 

Мягкая, пластичная основа в виде тройной эвтектики и твердые включения соединений SnSb и Cu6Sn5 обеспечивают высокий уровень антифрикционных свойств и применяются для заливки подшипников газовых турбин, турбокомпрессоров, турбонасосов и др.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: