Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры появились еще в первой половине ХХ в. на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем во впускном трубопроводе. Головка блока получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.

С этими трудностями удалось справиться компании Mitsubishi, которая впервые применила систему непосредственного впрыска на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.

Преимущества системы непосредственного впрыска заключаются в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:1) режим работы на сверхбедных смесях; 2) режим работы на стехиометрической смеси; 3) режим резких ускорений с малых оборотов.

Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.

Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.

Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает. По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине.

Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного. Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском Audi 2.0 FSI

Литература:

Росс Твег. Системы впрыска бензина. Устройство, обслуживание, ремонт.

Электронные ресурсы: http://wiki.zr.ru/index.php /Непосредственный_впрыск

Контрольные вопросы.

1. Что такое принудительный холостой ход и как он управляется в современных карбюраторах?

2. Что такое рециркуляция ОГ?

3. Почему механическое управление впрыском уступило место электронному?

4. Какие смеси доступны при непосредственном впрыске и как это влияет нап экономичность?

5. Какие режимы имеет форсунка непосредственного впрыска

Особенности устройства элементной базы систем впрыска топлива.

1. Устройство бензобаков
2. Устройство датчика уровня топлива.
3. Системы выпуска отработавших газов.

1. Устройство бензобаков

Топливный бак - важный конструктивный элемент топливной системы. Он предназначен для безопасного хранения определенного количества топлива (бензин, дизельное топливо, газ и др.), предотвращения его утечек и ограничения выбросов в результате испарения.

На легковых автомобилях топливный бак устанавливается, как правило, перед задней осью под задним сиденьем, вне зоны деформации автомобиля при ударе сзади. Объем топливного бака должен обеспечивать автономный пробег автомобиля в пределе 400-600 км. Бак закрепляется на кузове автомобиля ленточными хомутами. С нижней части топливного бака может устанавливаться металлическая защита от повреждений. Для предотвращения нагрева топливного бака от элементов выпускной системы применяются теплоизолирующие прокладки.

Топливные баки изготавливаются из алюминий, сталь или пластмассы. Самым популярным материалом в настоящее время является полиэтилен высокой плотности. Преимуществом пластмассовых баков является наилучшее использование пространства для установки, т.к. при изготовлении (формовке) можно получить топливный бак любой формы, а значит добиться максимального его объема.

Пластик не подвержен коррозии, вместе с тем, стенки бака проницаемы для углеводородов на молекулярном уровне. Для предотвращения микроутечек топлива пластиковые баки изготавливаются многослойными. В некоторых конструкциях внутренняя поверхность бака покрывается фтором, препятствующим утечкам.

Металлические топливные баки свариваются из штампованного листа. Алюминий используется для хранения бензина, дизтоплива, сталь – для газа. С целью оптимизации свободного пространства для каждого нового автомобиля разрабатывается свой топливный бак. При этом для одной модели автомобиля топливные баки могут различаться в зависимости от типа кузова, типа двигателя, конструкции топливной системы, системы впрыска, климатического исполнения.

Заправка топливного бака производится через заливную горловину, которая располагается слева или справа над задним крылом. Предпочтительным является левое расположение заливной горловины (расположение со стороны водителя), при котором по окончании заправки меньше шансов оставить заправочный пистолет в горловине и уехать вместе с ним.

С топливным баком заливная горловина соединена трубопроводом. Сечение заливной горловины и трубопровода должно обеспечивать скорость заправки топливного бака порядка 50 литров в минуту. Горловина топливного бака запирается винтовой крышкой. На автомобилях Ford применяется заливная горловина топливного бака без крышки – система Easy Fuel. Снаружи горловина закрыта лючком, оборудованным замком. Замок лючка бензобака отпирается из салона с помощью электрического (электродвигатель) или механического (трос) привода.

Топливо в систему подается через выходной топливопровод, избытки топлива возвращаются обратно в бак по сливному топливопроводу. В автомобилях с бензиновыми двигателями в топливном баке устанавливается электрический топливный насос, обеспечивающий нагнетание топлива в систему. В конструкции автомобиля предусматривается технологический доступ к насосу (лючок в кузове).

Для контроля уровня топлива в баке устанавливается соответствующий датчик. Он образует единый блок с топливным насосом (бензиновые двигатели) или устанавливается отдельно (дизели). Датчик состоит из поплавка и потенциометра. При снижении уровня топлива поплавок опускается, изменяется сопротивление связанного с ним потенциометра и уменьшается напряжение в цепи. При этом отклоняется стрелка указателя уровня топлива на панели приборов. В топливных баках сложной конструкции и большого объема может устанавливаться два датчика контроля уровня топлива, работающих совместно.

Для эффективной работы топливного бака в нем должно постоянно поддерживаться атмосферное давление. Данную задачу решает система вентиляции топливного бака, которая: нейтрализует разряжение, возникающее при потреблении топлива из бака; способствует вытеснению избытка воздуха, возникающего при заправке топливного бака; противодействует повышению давления в связи с нагревом топлива.

При пониженном давлении топливный бак может деформироваться, а подача топлива прекратиться, при высоком давлении – разорваться.

На современных автомобилях используется система вентиляции топливного бака закрытого типа, т.е. топливный бак не имеет непосредственного соединения с атмосферой. Схемы системы вентиляции топливного бака, используемые на автомобилях, могут существенным образом отличаться. Вместе с тем, можно выделить общие элементы, отвечающие за впуск воздуха в топливный бак и выпуск из него паров топлива.

Задача впуска воздуха при возникающем разряжении решается с помощью предохранительного клапана. Клапан устанавливается в крышке заливной горловины. По своей сути это обратный клапан, пропускающий воздух в одном направлении и запирающий его движение - в другом. При возрастании разряжения в топливном баке атмосферное давление отжимает пружину клапана, в результате чего воздух поступает в топливный бак и давление в нем выравнивается с атмосферным давлением.

При заправке топливного бака избыток паров топлива вытесняется по вентиляционному трубопроводу, расположенному параллельно с заправочным трубопроводом. На конце трубопровода может располагаться компенсационная емкость, в которой скапливается избыток паров бензина при заправке. Емкость не соприкасается с атмосферой, а соединена отдельным трубопроводом с адсорбером системы улавливания паров бензина. В конце вентиляционного трубопровода также устанавливается гравитационный клапан, предотвращающий разлив топлива из бака при опрокидывании автомобиля. Клапан срабатывает при наклоне автомобиля свыше 45°.

Пары топлива, возникающие при нагреве, выводятся из топливного бака с помощью системы улавливания паров бензина. Данная система является неотъемлемой частью системы вентиляции топливного бака. Для эффективной работы системы улавливания паров бензина в топливном баке могут устанавливаться датчик температуры топлива и датчик давления топлива в топливном баке.

2. Устройство датчика уровня топлива.

Датчик Epsilon создан для точного контроля уровня топлива в баках и резервуарах различных транспортных средств. Датчик применяется в составе систем контроля расхода топлива и систем спутникового мониторинга транспорта на основе GPS/ГЛОНАСС различных производителей. Датчик Epsilon использует емкостный тип принципа измерения топлива.

Устройство датчика. В измерительной головке датчика находится преобразователь уровня, цифровая схема обработки сигнала, устройство обмена данными, стабилизатор питания и схема, обеспечивающая необходимую защиту входных и выходных цепей. Соединение с внешними устройствами обеспечивается через интерфейсный кабель.

Измерение уровня топлива обеспечивается измерительной головкой совместно с зондом, погружаемым в топливо. Зонд представляет собой коаксиальный конденсатор, образованный алюминиевой трубкой (наружный электрод) и изолированной медной струной (внутренний электрод). Необходимое натяжение струны поддерживается пружиной, находящейся в контакте разъема зонда.

Крепление датчика выполняется с помощью самосверлящих винтов, фиксирующих фланец датчика (вместе с прокладкой) на баке. Герметичность посадки измерительной головки обеспечивается уплотнительным кольцом, расположенным в торцевой проточке. Защита интерфейсного кабеля от механических воздействий обеспечивается гибким металлорукавом.

 

Принцип работы. Зонд датчика при погружении в топливо выполняет функцию переменного конденсатора, емкость которого линейно зависит от уровня его заполнения топливом.

Измерительная головка датчика выполняет линейное преобразование емкости зонда в цифровой код уровня топлива, обработку полученных цифровых данных с усреднением результатов измерений, измерение температуры топливного бака и выдачу данных в унифицированном протоколе EDE по шине RS-485 или RS-232, либо аналоговым сигналом (только уровень), в зависимости от модели.

Данные об уровне топлива могут выдаваться в виде 10-и, 12-и или 16-и битного значения, данные о температуре – в виде 8-и битного значения.

3. Системы выпуска отработавших газов.

Система выпуска отработавших газов состоит из следующих элементов:  выпускного клапана; выпускного канала; приемной трубы глушителя; дополнительного глушителя (резонатора); основного глушителя; соединительных хомутов.

Система выпуска предназначена для отвода отработавших газов от цилиндров двигателя, их охлаждения и уменьшения шума при выбросе в атмосферу.  Двигатель выбрасывает через выпускной канал цилиндра отработавшие газы в выпускной коллектор. С этого момента начинается их движение по системе выпуска.  

Система выпуска ОГ легкового автомобиля представлена на рис. Продукты сгорания из выпускного коллектора направляются в приемную трубу резонатора (дополнительного глушителя), а потом и основного глушителя. Внутри обоих устройств установлены перегородки с большим количеством отверстий. Газы, с шумом попадающие в глушитель, вынуждены пройти длинный путь по его лабиринтной системе. При этом звуковая волна существенно ослабевает, а газы охлаждаются.

На работу системы выпуска расходуется до 4 % мощности двигателя. Все соединения в системе выпуска отработавших газов должны быть герметичны. Выпускные элементы двигателя соединяются с помощью специальных жаростойких прокладок, трубы глушителя вдеваются друг в друга и стягиваются хомутами.


Рис. Схема работы глушителя двигателя:

1 — выпускная труба; 2 — перегородка; 3 — перфорированная труба; 4 — перфорированная перегородка; 5 — основной глушитель; 6 — дополнительный глушитель; 7 — газоприемник; 8 — приемные трубы глушителя

Литература:

Электронные ресурсы:

http://systemsauto.ru/fuel/fuel_tank.html

http://www.topliva-net.ru/sistema-teletrack/oborydovanie/dyt.html

http://www.avtotut.ru/ustroistvoavto/dvs/otrabgaz/

Контрольные вопросы.

1. В чем достоинства полиэтиленового бензобака?

2. Принцип работы датчика уровня топлива?

3. Почему глушитель уменьшает шум при истечении ОГ?

Диагностика, ТО и ТР систем впрыска топлива.

1. Программирование микропроцессоров КСУД.
2. Основные типы диагностического оборудования.
3. Программирование диагностического оборудования.

1. Программирование микропроцессоров КСУД.

Чип-тюнинг — это настройка режимов работы электронных контроллеров путем коррекции внутренних управляющих программ (firmware). В основном понятие применяется для обозначения коррекции программы блока управления двигателем автомобиля с целью увеличения мощности. Кроме указанного к чип-тюнингу иногда относят и применение дополнительных электронных модулей для решения схожих задач.

Все работы по чип-тюнингу можно условно разделить на три этапа:

1) Считывание оригинальной программы (прошивки) из контроллера (блока управления)

2) Коррекция считанной прошивки и коррекция контрольных сумм в ней

3) Запись откорректированной прошивки в контроллер

Первый и последний этапы процессуально схожи между собой и могут выполняться несколькими разными способами. Выбор способа зависит от типа и возможностей блока управления, который подвергается тюнингу, а также от технических возможностей тюнингера. Наиболее популярна возможность считывания/записи программы через диагностический разъем автомобиля, не доставая самого блока управления.

Эта возможность поддерживается большинством блоков управления двигателем начиная примерно с 1997 г., когда большинство автопроизводителей начало массово внедрять в контроллерах применение электрически перепрограммируемой флэш-памяти. Для чтения программы через диагностический разъем используются специальные аппаратные интерфейсы и программное обеспечение, обычно достаточно простые в использовании и не требующие от персонала специальных знаний, что важно для распространения чип-тюнинга.

В большинстве контроллеров, выпущенных до указанного срока, программа хранится в микросхемах ПЗУ с ультрафиолетовым стиранием, а для ее считывания/записи требуется демонтаж микросхемы памяти (обычно выпаиванием) и программатор для микросхем данного типа. Данный способ предполагает наличие достаточно высокой квалификации у персонала.

Еще одним способом чтения/записи программы является достаточно молодой интерфейс BDM (Background Debug Mode — режим фоновой отладки), предложенный фирмой Motorola и использующийся в режиме внутрисхемного программатора. Данный интерфейс присутствует, естественно, только в контроллерах, собранных на базе процессора Motorola и предполагает наличие специального оборудования и навыков у персонала.

В отдельных случаях для перезаписи программ также используется Boot-режим процессора, несколько сходный с BDM.

Редактирование программ контроллеров — это ключевой момент чип-тюнинга, как бизнеса. Подавляющее большинство тюнинговых фирм сами не редактируют считанные файлы, а отправляют их в фирмы, специализирующиеся именно на их редакции. Именно от того, насколько хорошо специалист, занимающийся редакцией программы, понимает работу мотора, знает его резервы и слабые места, зависит результат чип-тюнинга. Для редактирования программ контроллеров обычно применяется специальное программное обеспечение, позволяющее найти и представить в графическом виде таблицы калибровочных данных. Обычно одновременно с редактированием калибровочных данных пересчитываются контрольные суммы программы, использующиеся для контроля ее целостности. Реже для этого применяют специальные калькуляторы контрольных сумм. Следует отметить, что программное обеспечение, позволяющее производить визуальный поиск калибровочных таблиц, имеет ряд существенных недостатков: 1. невозможность поиска калибровочных констант 2. вероятность ошибки в идентификации калибровочных таблиц (например, таблица, внешне похожая на угол опережения зажигания (УОЗ), совсем не обязательно отвечает именно за УОЗ) По указанным выше причинам на рынке ПО имеются альтернативные продукты, представляющие собой специализированные редакторы, умеющие в графическом виде отображать только достоверно известные калибровочные константы и таблицы для данной прошивки. Такое ПО содержит базу данных известных прошивок и карт калибровок к ним. Карты калибровок составляются разработчиком ПО, при этом как правило используется реверс-инжиниринг прошивок с целью изучения алгоритмов работы системы управления и поиска необходимых калибровочных данных. Коррекция контрольных сумм прошивок производится в таких редакторах автоматически при сохранении измененной прошивки в файл.

 

2. Основные типы диагностического оборудования.






Принцип действия

Автосканер представляет из себя стационарный или переносной компьютер, подключаемый кабелем к диагностическому разъёму автомобиля. Интерфейс подключения в подавляющем большинстве случаев — последовательный, RS-232. Автосканер подключается к шине обмена данными (CAN, Controller Area Network) между блоками автомобиля, что позволяет получать исчерпывающую информацию о его состоянии, измерять характеристики, считывать показания с датчиков. Для этого сканер оснащается специальной программой, как правило, содержащей в себе обширные базы данных параметров по автомобилям. Характерной особенностью диагностики при помощи компьютерного автосканера является то, что она позволяет оценивать состояние узлов комплексно, т.е, с учетом взаимного влияния неисправностей друг на друга, что невозможно при традиционной ручной по одному, исследуемому в данный момент, параметру.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: