Акустические расходомеры

 

Для измерения расходов загрязненных, агрессивных и быстро-кристаллизующихся жидкостей и пульп, а также потоков, в которых возможны большие изменения (пульсации) расходов и даже изме­нения направления движения, когда не могут быть применены дру­гие виды расходомеров, используются расходомеры акустические, чаще всего ультразвуковые. Преимуществами акустических расхо­домеров являются безконтактность измерений, отсутствие движущихся частей в потоке, отсутствие потерь давления в трубо­проводах и др.

Области применения ультразвуковых расхоодмеров:

· где не работают электромагнитные расходомеры;

· когда не достаточно функциональности вихревого расходомера (точность, диапазон измерения, прямые участки);

· когда кориолисовый расходомер создает слишком большую потерю давления;

· когда функциональность кориолисова расходомера избыточна.

Принцип действия акустических расходомеров основан на зави­симости акустического эффекта в потоке от расхода вещества. Из­вестно несколько методов использования звуковых (ультразвуко­вых) колебаний для измерения расходов жидкостей и газов. Один из них, так называемый фазовый, основан на том, что при распро­странении звуковой волны в движущейся среде время ее прохожде­ния от источника до приемника определяется не только скоростью распространения звука в данной среде, но и скоростью движения самой среды. Если звуковая волна направлена по движению пото­ка, скорости их складываются, если против потока, — вычитаются. Разность времени прохождения звука по направлению потока и против него пропорциональна скорости потока, а следовательно, расходу протекающей жидкости.

Акустический расходомер, работаю­щий по двухканальной фазовой схеме (рис. VIII.20), состоит из ультразвуко­вого генератора УЗГ, являющегося ис­точником питания; излучающих пьезо-преобразователей ИП1 и ИП2; прием­ных пьезопреобразователей ПП1 и ПП2; фазовращающего устройства ФУ для устранения путем асимметрии ка­налов преобразователей возникающих фазовых сдвигов;' электронного усили­теля Ус и измерительного прибора ИП, который градуируется в единицах рас­хода. В качестве пьезоэлементов в пре­образователях чаще всего применяются пластины из титаната бария, могут так­же использоваться пьезоэлементы из кварца, титанато-циркониевой керами­ки, а также магнитострикционные.

Импульсы ультразвука посылаются под углом к оси трубопровода так, что их направление в одном канале совпа­дает с направлением потока, а в другом направлено против потока.

В последнее время получают распространение ультразвуковые расходомеры, в которых используется эффект Допплера, заключающийся в том, что ультра­звуковые волны, генерируемые излучателями, отражаются от взвешенных частиц, завихрений, пузырьков газа и т. п. в потоке измеряемой среды и воспринимают­ся приемниками отраженных излучений. Разность между частотами излучаемых и отраженных акустических волн позволяет определить скорость потока.

Измерительный преобразователь таких расходомеров представляет собой устройство, состоящее из двух пьезокристаллов, один из которых является гене­ратором ультразвуковых колебаний, излучаемых под утлом к потоку измеряемой среды, а второй — приемником отраженных колебаний. Излучаемый и отражен­ный сигналы сравниваются с помощью специальных электронных устройств.

В настоящее время акустические расходомеры интенсивно раз­рабатываются, и в ближайшее время, очевидно, предстоит их широ­кое применение в различных отраслях пищевой промышленности.

 


 


ВИХРЕВЫЕ РАСХОДОМЕРЫ

 

В настоящее время разработаны и имеют весьма широкие пер­спективы применения вихревые расходомеры, принцип действия основан на зависимости от расхода частоты колебаний давления среды, возникающих в по­токе в процессе вихреобразования. Измерительный преобразова­тель вихревого расходомера (рис. VIII.19) представляет собой завихритель 1, вмонтированный в тру­бопровод, с помощью которого поток, завихряется (закручивает­ся) и поступает в патрубок 2. На выходе из патрубка в расширяю­щейся области 4 установлен элек­троакустический преобразователь 3, воспринимающий и преобразу­ющий вихревые колебания потока в электрический сигнал, который далее приводится к нормализован­ному виду, отвечающему требованиям ГСП.

Завихрения потока формируются таким образом, что внутрен­няя область вихря — ядро, поступая в патрубок 2, совершает толь­ко вращательное движение. На выходе же из патрубка в расши­ряющуюся область 4 ядро теряет устойчивость и начинает асимметрично вращаться вокруг оси патрубка.


Кориолисовые расходомеры (массовые расходомеры) — приборы, использующие для измерения массового расхода жидкостей, газов эффект Кориолиса. Принцип действия основан на изменениях фаз механических колебаний U образных трубок, по которым движется измеряемая среда. Сдвиг фаз пропорционален величине массового расхода. Поток с определенной массой, движущийся через входные ветви расходомерных трубок, создает кориолисову силу, которая сопротивляется вибрации расходомерных трубок. Наглядно это сопротивление Вы можете чувствовать когда гибкий шланг извивается под напором воды в него подаваемой.

 

Преимущества измерения кориолисовым расходомером:

высокая точность измерений параметров;

работают вне зависимости от направления потока;

не требуются прямолинейные участки трубопровода до и после расходомера;

нет затрат на установку вычислителей расхода;

надёжная работа при наличии вибрации трубопровода, при изменении температуры и давления рабочей среды (только если расходомер установлен на резиновые подставки-прокладки);

длительный срок службы и простота обслуживания благодаря отсутствию движущихся и изнашивающихся частей;

нет необходимости в периодической перекалибровке и регулярном техническом обслуживании;

могут работать от разных источников питания с помощью самопереключающегося встроенного блока питания;

измеряют расход сред с высокой вязкостью;

разрешено использование в пищевой и фармацевтической промышленностях.

 

 

Кориолисовыми называются расходомеры, в преобразователях которых под влиянием силового воздействия возникает кориолисово ускорение, зависящее от расхода. Для образования этого ускорения непрерывно вращающемуся преобразователю расхода придают конфигурацию, заставляющую поток перемещаться в радиальном направлении по отношении к оси вращения, совпадающей с осью трубопровода.

Назначение:

Кориолисовый расходомер предназначен для измерения массового и вычисления объемного расхода жидких и газообразных сред. Используется в различных областях промышленности, а также в системах коммерческого учета.

Массовый расход определяется путем измерения временной задержки между сигналами детекторов, которая пропорциональна массовому расходу. При отсутствии потока измеряемой среды изгиба трубки не происходит, и выходной сигнал отсутствует.

Резонансная частота трубки зависит от её геометрии, материала, конструкции и массы. Масса состоит из двух частей: массы самой трубки и массы измеряемой среды в трубке. Масса трубки (трубок) постоянна дляданного датчика. Поскольку масса среды в трубке равна произведению плотности среды и внутреннего объема трубки, а объем трубки является константой для данного типоразмера датчика, то резонансная частота колебаний трубки может быть привязана к плотности среды и определена путем измерения резонансной частоты колебаний, периода колебаний трубки и температуры (измерение модуля упругости материала трубки при измерении температуры учитывает температурный сенсор).

   

Состав расходомера:

Основными элементами являются две расходомерные трубки, на которых расположены:

 - силовая электромагнитная катушка возбуждения и магнит

 - два тензодатчика с магнитами и электромагнитными катушками

 - терморезистор

Внутри расходомерных трубок специальной формы движется измеряемая среда.

Под воздействием задающей катушки расходомерная трубка колеблется с резонансной частотой.

В результате эффекта Кориолиса, возникающем при движении среды в колеблющейся трубке, различные её части изгибаются друг относительно друга. Этот изгиб приводит к взаимному рассогласованию по фазе колебаний различных участков расходомерной трубки, которое преобразуется электромагнитными детекторами скорости в выходной сигнал датчика расхода.

Плотность среды вычисляется на основании линейной зависимости между частотой и периодом колебаний трубки с использованием калибровочных констант.

По полученным значениям массового расхода и плотности вычисляется объемный расход.

Кориолисовый расходомер состоит из датчика расхода (сенсора) и преобразователя. Сенсор напрямую измеряет расход, плотность и температуру. Преобразователь конвертирует полученную с сенсора информацию в стандартные выходные сигналы. Измеряемая среда, поступающая в сенсор, разделяется на равные половины, протекающие через каждую из сенсорных трубок. Движение задающей катушки приводит к тому, что трубки колеблются вверх-вниз в противоположном направлении друг к другу. Сборки магнитов и катушек-соленоидов, называемых детекторами, установлены на сенсорных трубках. Катушки смонтированы на одной трубке, магниты на другой. Каждая катушка движется сквозь однородное магнитное поле постоянного магнита. Сгенерированное напряжение от каждой катушки детектора имеет форму синусоидальной волны. Эти сигналы представляют собой движение одной трубки относительно другой. Когда расход отсутствует, синусоидальные сигналы, поступающие с детекторов, находятся в фазе.

При движении измеряемой среды через сенсор проявляется физическое явление известное как эффект Кориолиса. Поступательное движение среды во вращательном движении сенсорной трубки приводит к возникновению кориолисовой силы. Эта сила направлена против движения трубки, которое задается катушкой, т.е. когда трубка движется вверх во время половины её собственного цикла, то для жидкости, поступающей внутрь, сила Кориолиса направлена вниз. Как только жидкость проходит изгиб трубки, направление силы меняется на противоположное. Таким образом, во входной половине трубки сила, действующая со стороны жидкости, препятствует смещению трубки, а в выходной способствует. Это приводит к изгибу трубки.

Когда во второй фазе вибрационного цикла трубка движется вниз, направление изгиба меняется на противоположное.

Сила Кориолиса и, следовательно, величина изгиба сенсорной трубки прямо пропорциональны массовому расходу жидкости. Детекторы измеряют фазовый сдвиг при движении противоположных сторон сенсорной трубки.

Как результат изгиба сенсорных трубок генерируемые детекторами сигналы не совпадают по фазе, так как сигнал от входной стороны запаздывает по отношению к сигналу от выходной стороны. Разность интервалов времени между сигналами измеряется в микросекундах и прямо пропорциональна массовому расходу. Чем больше разность, тем больше массовый расход.

Достоинства:

Высокая точность, повторяемость результатов измерений. Нет движущихся деталей. Не требуются прямые участки.

Недостатки:

 Высокая стоимость.



Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: