Строение нуклеотидов (отличия)

Урок 69, 70                                               Лекция

 Нуклеиновые кислоты.

АТФ и АДФ, их взаимопревращение и роль этого процесса в природе. Понятие о ДНК и РНК.

Цель: ознакомиться с историей открытия нуклеиновых кислот; рассмотреть их состав, строение, свойства; ознакомиться сАТФ и АДФ, их взаимопревращение и роли этого процесса в природе; рассмотреть строение и роль ДНК и РНК.

Нуклеиновые кислоты впервые были выделены из ядер лейкоцитов в 1868 году химиком Фридрихом Мишером. Неразлагающееся под действием ферментов вещество содержало фосфор и имело ярко выраженные кислотные свойства. Соединению была приписана формула C29H49N9O22P3.

Иоганн Фридрих Мишер родился в 1844 году в Швейцарии. Выдающийся физиолог, гистолог и биолог.

В 1868 году, изучая химический состав клеток гноя, Фридрих Мишер открыл главную составную часть ядер лейкоцитов, названную им нуклеином (от лат. Нукс — ядро ореха, окончание –ин указывало на содержание азота).

В 1874 году Мишер провел элементарный химический анализ нуклеина из сперматозоидов лосося и установил его кислотные свойства, что и стало причиной переименования нуклеина в нуклеиновую кислоту (термин был предложен в 1889 году).

Помимо этого важнейшего открытия, учёный занимался исследованиями строения и состава ядер в желтке куриного яйца, состава сперматозоидов лосося (открыл вещество протамин), физиологией спинного мозга.

Полимерные молекулы, состоящие из нуклеотидов, называются нуклеиновыми кислотами. Они образуют ДНК и РНК и несут наследственную информацию.

Строение мономера

Основой строения нуклеиновых кислот является структурная единица – нуклеотид. Нуклеотид - это мономер, состоящий из остатков:

  • азотистых оснований (пиримидиновых или пуриновых);
  • моносахарида;
  • фосфорной кислоты.

Моносахарид – основа нуклеотида. В зависимости от содержащегося моносахарида различают два вида нуклеиновых кислот:

  • дезоксирибонуклеиновая кислота (ДНК) – содержит дезоксирибозу (С5Н10О4);
  • рибонуклеиновая кислота (РНК) – содержит рибозу (С5Н10О5).

Нуклеотиды отличаются азотистыми основаниями.

Азотистое основание может быть пиримидиновое и пуриновое. Пиримидиновые основания являются производными пиримидина, а пуриновые основания – производные пурина. К пиримидинам относятся урацил, тимин, цитозин, к пуринам – аденин, гуанин. В состав нуклеиновых кислот входят такие моносахариды, как рибоза и дезоксирибоза. Рибоза входит в состав рибонуклеиновой кислоты, а дезоксирибоза – в состав дезоксирибонуклеиновой кислоты. Это отличие ДНК от РНК.

В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Это второе отличие ДНК от РНК.

Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Нуклеозид, связанный с остатком фосфорной кислоты, называется нуклеотидом.

То есть нуклеиновые кислоты – это биополимеры с относительной молекулярной массой, достигающей 5 · 109.

Строение нуклеотидов (отличия)

Остаток фосфорной кислоты присоединён к третьему или пятому атому углерода моносахарида, а остаток азотистого основания – к первому атому.

Строение цепочки

Нуклеотиды, содержащие разные типы азотистых оснований, выстраиваются в длинную полимерную цепь, называемую полинуклеотидом. Чтобы эта гигантская цепочка уложилась в ядро клетки, она компактно скручивается. Выделяют четыре уровня структурной организации или упаковки кислот:

  • первичная – нуклеотиды, соединённые остатками фосфорной кислоты (чередование нуклеотидов в полимерной цепи);
  • вторичная – две цепочки, соединённые водородными связями по принципу комплементарности; В 1953 году была расшифрована вторичная структура ДНК. За это открытие в 1962 году была присуждена Нобелевская премия Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу.
  • третичная – спираль, образованная за счёт радикалов азотистых оснований;
  • четвертичная – гистоны (класс белков) и нити хроматина (комплекс из ДНК, РНК, белков).

Пример третичной структуры – ДНК. Это самая большая молекула, которая может состоять из миллионов нуклеотидов. Мономеры образуют две цепочки, соединённые по принципу комплементарности и перекрученные в спираль. Более сложная упаковка – четвертичная структурная организация, при которой ДНК, переплетается с РНК и белками, образуя хроматин. Это вязкое вещество, содержащееся в ядре и образующее хромосомы при делении клетки.

Принцип комплементарности – это возможность определённых азотистых оснований создавать водородные связи с другими азотистыми основаниями. Аденин всегда образует связь только с тимином (в ДНК) или урацилом (в РНК), а гуанин – с цитозином.

 

То есть РНК представляет собой одинарную цепь полимеров, а ДНК – двойную. Эта двойная спираль ДНК построена по принципу комплементарности: напротив аденинового нуклеотида всегда расположен тиминовый другой полимерной цепи, а напротив гуанинового – цитозиновый нуклеотид. Этот порядок расположения обусловлен водородными связями между нуклеотидами.

ДНК находится в основном в хромосомах (99 %), а также митохондриях и хлоропластах. РНК же входит в состав ядрышек, рибосом, митохондрий, пластид и цитоплазмы. Это ещё одно отличие ДНК от РНК.

ДНК хранит генетическую информацию, которая передаётся из поколения в поколение. В её составе закодирован состав всех белков организма, хотя молекула ДНК не принимает участие в синтезе белка.

Всю эту функцию выполняет и-РНК. Этот процесс состоит из двух стадий. На первой стадии происходит считывание информации, этот процесс называют транскрипцией, а вторая стадия – это синтез белка – трансляция.

Важным свойством ДНК является её способность к самоудвоению – репликации. Если водородные связи между комплементарными основаниями разрываются, то спираль раскручивается, но затем синтезируется новая нить из нужных нуклеотидов. В результате образуется две абсолютно одинаковые молекулы ДНК, в каждой из которых одна нить взята от исходной ДНК, а вторая нить образовалась в результате биосинтеза.

Как получают нуклеиновые кислоты? Нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Поэтому для их выделения, необходимо очистить нуклеиновые кислоты от белков. Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Очистку и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хроматографии и гель - электрофореза.

Нуклеиновые кислоты хорошо растворимы в воде, практически не растворимы в органических растворителях, очень чувствительны к действию температуры и критических значений уровня pH.

Молекулы ДНК, которые имеют большое значение молекулярной массы, можно разделить на фрагменты механическим способом, например, перемешивания раствор.

Молекулы ДНК – самые крупные молекулы. Молекула ДНК E.coli состоит примерно из 4 000 000 пар нуклеотидов, её относительная масса равна 26 000 000 000. Чтобы записать нуклеотидную последовательность ДНК человека, потребуется около 1 000 000 страниц.

Нуклеиновые кислоты делят на фрагменты такими ферментами, как нуклеазы.

Молекулы РНК химически очень уязвимы. При действии кислот и щелочей фрагменты полимерной цепи легко гидролизуются (Р(О) – О – СН2) и фрагменты А, У, Г и Ц легко отщепляются. Например, при действии фермента рибонуклеазы можно получить мономерные фрагменты и химически связанные при этом гетероциклы.

Что касается химических свойств ДНК, то в воде эта молекула образует вязкие растворы, при нагревании этих растворов или при действии щелочей двойная спираль распадается на две цепи, которые вновь могут объединиться, если вернуть прежние условия.

В слабой кислотной среде происходит гидролиз ДНК, при этом расщепляются фрагменты Р(О) – О – СН2 и образуются мономерные, димерные или тримерные кислоты, из которых была построена молекула ДНК.

Что же касается РНК, то по выполняемым ими функциям различают:

· информационные РНК (и-РНК) осуществлляют синтез белка;

· рибосомные РНК (р-РНК) входят в состав рибосом и выполняют структурную функцию;

· транспортные РНК (т-РНК) обеспечивают доставку аминокислот к месту синтеза белка – к рибосомам.

В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.

Таким образом, к нуклеиновым кислотам относятся ДНК и РНК. ДНК и РНК – это природные биополимеры, построенные остатками нуклеотидов. Нуклеиновые кислоты состоят из множества нуклеотидов. При определённых условиях для нуклеиновых кислот характерны реакции гидролиза. Основными функциями ДНК и РНК является синтез белков.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: