Физическое загрязнение

Физические загрязнения связаны с изменением физических, энергетических, волновых и радиационных параметров внешней среды.

Тепловые загрязнения окружающей среды. Ежегодно в мире сжигается до 5 млрд т угля, 3,2 млрд т нефти (по выражению Менделеева «использовать нефть в качестве топлива – все равно, что топить ассигнациями»), что сопровождается ежегодным выбросом в атмосферу более 20 млрд т СО2 и выделением 2-1020 Дж тепла.

Переход от минерального горючего к ядерному до некоторой степени уменьшает химическое загрязнение среды, но при этом возрастает тепловое загрязнение. Мощные тепловые электростанции отводят с подогретыми сбросными водами в реки, озера, искусственные водохранилища большое количество тепла, тем самым влияя на термический и биологический режимы водоемов.

Тепловые загрязнения при повышении температуры воды приводят к понижению концентрации кислорода в воде, замене обычной флоры водорослей менее желательными сине-зелеными водорослями, а также усиливают восприимчивость организмов к токсичным веществам.

Для ограничения теплового загрязнения количество тепла, отводимого в водный объект, не должно повышать температуру последнего: в водоемах питьевого и культурного водопользования — более чем на 3°С по сравнению с максимальной температурой воды в летнее время; в водоемах, используемых в рыбно-хозяйственных целях, — более чем на 3°С в летний и 5°С в зимний периоды.

Источниками тепловых загрязнений в пределах городских территорий служат подземные газоходы промышленных предприятий металлургического производства (140—160 °С), теплотрассы (50— 150 °С), сборные коллекторы, коммуникационные туннели (35—45 °С), туннели метро и другие подземные сооружения (18—25 °С). Искусственное промораживание грунтов при строительстве в сложных гидрогеологических условиях приводит к формированию временных криозон (от -10 до -26 °С) шириной до нескольких метров.

 

Шум и вибрация.

Шум — одна из форм физического (волнового) загрязнения окружающей среды, адаптация организмов к которому практически невозможна. В связи с этим шумы в настоящее время рассматривают как реальный и серьезный загрязнитель биосферы. Шум — сочетание акустических волн различной частоты и интенсивности. Акустические волны — это механические колебания, распространяющиеся в упругой среде (твердой, жидкой, газообразной). Основными параметрами акустических волн являются интенсивность и спектральный состав (спектр).

Звуковые волны представляют собой колебательные изменения давления воздуха — сгущения и разряжения. Интенсивность звука — это количество энергии, переносимое звуковой волной за единицу времени через единицу площади поверхности, нормальной к направлению распространения волны. Минимальное значение звукового давления — ро, воспринимаемое ухом человека, называется пороговым. На частоте 1000 Гц Р0 = 2 х 10-5 Па.

Субъективной характеристикой звука, связанной с его интенсивностью, является громкость, зависящая от частоты. Акустические колебания, воспринимаемые человеческим ухом, лежат в диапазоне частот от 16 Гц до 20 000 Гц (звуковой диапазон частот).

В этой связи шумы, воспринимаемые ухом человека, принято делить на:

· низкочастотные (до 350 Гц),
· среднечастотные (350—800 Гц) и
· высокочастотные (свыше 800 Гц).

Считается, что высокочастотный шум оказывает более неблагоприятное воздействие на организм.

Акустические волны с частотой ниже 20 Гц называются инфразвуком, а выше 20 000 Гц (20 кГц) — ультразвуком. Основные реакции организмов на шумы хорошо изучены. С гигиенических позиций относительно комфортным считается акустический режим при уровне звука 10—60 дБ. Выраженные психические реакции проявляются уже с уровня 30 дБ, а максимально дискомфортным считается режим при уровне шума выше 80 дБ.

Существенный вклад в шумовое загрязнение среды вносят строительные, энергетические и промышленные предприятия, транспорт, который создает 60—80% шума, воздействующего на человека в местах его пребывания, Примерный уровень интенсивности различных звуков и шумов приведен в табл. 5.4.

Экологической значимостью обладает частотная характеристика звука. Например, при частоте инфразвуковых шумов ниже 20 Гц возникают заметные нарушения жизнедеятельности организмов — ошущение психологического дискомфорта, развитие безотчетного чувства страха, возникновение паники среди животных, наблюдаемые перед

Глава 5. Естественное и антропогенное загрязнение окружающей среды 101

извержением вулканов, штормами, при землетрясениях. Подобную реакцию у животных вызывают звуки пролетающих тяжелых вертолетов, движущихся тяжелых машин, работающих прессов и других устройств, работа которых сопровождается шумом с инфразвуковыми частотами в спектре.

Особенно неблагоприятно воздействие на организм человека инфразвуковых колебаний с частотой 4 - 10 Гц.

 

Таблица 5.4 Уровень шума от некоторых источников

Уровень шума, дБ Источник звука
160 Выстрел крупнокалиберного орудия, на расстоянии 1—2 мот орудия
120 Шум самолета на удалении 50 м
100-110 Газотурбинные установки, компрессорные станции
80-100 В шумных цехах машиностроительных и металлургических заводов
90-100 Железнодорожный транспорт на расстоянии 20 м
95 Шум в вагоне метро при скорости 60 км/ч
90 Шум в кабине пассажирского самолета
77-83 Автомобильный транспорт на расстоянии 7,5 м
60 Нормальная речь
30-40 Шепот на расстоянии 1 м
15 Шелест листьев на расстоянии нескольких метров
0 Порог слышимости при 1000 Гц

Вибрация — совокупность механических колебаний. Звуковая вибрация представляет самостоятельный интерес лишь при очень высоких ее уровнях в связи с вибрационной усталостью материалов и конструкций. Вибрации могут:

· во-первых, способствовать звукоизлучению в окружающую среду, т.е. являться источником вредных и, прежде всего, инфразвуковых волн;
· во-вторых, воздействуя непосредственно на скелет человека, передаваться с малым затуханием в любую точку организма и приводить даже при относительно малых уровнях вибраций к значительным последствиям, связанным с резонансными явлениями в организме человека.

В связи с этим уровни вибраций также подлежат регламентированию.

Источниками вибраций являются транспортные средства, промышленные агрегаты, строительные машины и механизмы. Характеристики источников вибраций приведены в табл. 5.5.

Воздействие вибраций на грунтовые массивы может приводить к изменению рельефа поверхности, ухудшению механической устойчивости пород, служащих основанием фундаментов зданий и инженерных сооружений. При длительном воздействии вибраций возникает явление «усталости» грунтов, материалов и строительных конструкций.

 

Характеристики источников вибраций Таблица 5.5
Источник вибрации Виброскорость, мм/с
Рельсовый транспорт 160-0,3
Промышленные установки 5-0,05
Строительная техника 1,6-0,002
Автомобильный транспорт 0,07-0,005
Дневной фон в городе 0,02-0,006
Ночной фон в городе 0,01-0,003
Уровень микросейсмичности в несейсмичных районах <0,05
Безопасный геологический уровень 0,225
Безопасный физиологический уровень 0,12

Электромагнитные излучения.

Электромагнитное загрязнение — результат изменения электромагнитных свойств окружающей среды (электромагнитного фона). Источниками естественных электромагнитных полей (ЭМП) являются атмосферное электричество, солнечное и космическое излучение. Естественные изменения электромагнитного фона за счет существенного изменения солнечной активности, магнитных бурь и тому подобных называют электромагнитными аномалиями.

В условиях современного города на организм человека оказывают влияние электромагнитные поля, источниками которых служат различные генераторы и антенны радиопередающих устройств, электрифицированные транспортные линии, линии электропередач (ЛЭП)п трансформаторы, электротехнические устройства автоматики, в также приборы бытовой техники.

 

Диапазон электромагнитных излучении зависит от длины волны:

·  промышленные частоты —   50—60 Гц;
·  низкие частоты (НЧ) —   30—300 кГц;
·  средние частоты (СЧ) —   300 кГц — 3 мГц;
·  высокие частоты (ВЧ) —   3—30 мГц;
·  очень высокие частоты (ОВЧ) —   30—300 мГц;
·  ультравысокие частоты (УВЧ) —   300—3000 мГц;
·  сверхвысокие частоты (СВЧ) —   3—30 ГГц;
·  крайне высокие частоты (КВЧ) —   30—300 ГГц.

 

Электромагнитные поля характеризуются напряженностью электрического и магнитного полей и плотностью потока энергии.

Токи промышленной частоты (50 Гц) являются сильными источниками электромагнитных волн. Особый интерес представляет ЭМП вблизи высоковольтных ЛЭП, протяженность которых в России в настоящее время свыше 4,5 млн км с напряжением от 6 до 1150 кВ. Измерения напряженности поля в районах прохождения высоковольтных ЛЭП показали, что под линией она может достигать нескольких тысяч и даже десятков тысяч вольт на метр. Волны этого диапазона сильно поглощаются почвой, поэтому на небольшом удалении от линии (50—100 м) напряженность поля падает до нескольких сотен и даже нескольких десятков вольт на метр. Наибольшая напряженность поля наблюдается в месте максимального провисания проводов по линии точек проекции крайних проводов на землю.

Оценивая биологическое влияние ЭМП в целом, можно отметить, что воздействие слабых ЭМП на целостный организм животных чаще всего приводит к нарушениям физиологических функций:

ритма сердечных сокращений и

уровня кровяного давления,

электрической активности мозга и

возбудимости нервных клеток, обменных процессов, иммунной активности и т.д.

Наиболее высока чувствительность организмов к многократным воздействиям ЭМП. При этих условиях имеет место кумулятивный эффект: реакции возникают в результате ряда воздействий, каждое из которых самостоятельно не вызывает реакции. Подобные суммарные эффекты наблюдаются и при длительном непрерывном воздействии ЭМП.

Радиоактивное загрязнение.

Радиоактивное загрязнение представляет особую опасность для человека и среды его обитания. Явление Радиоактивности связано с самопроизвольным распадом атомных ядер, приводящим к изменению их атомного номера или массового числа и сопровождающимся альфа-, бета- и гамма-излучениями. Альфа-излучение — поток тяжелых частиц, состоящий из протонов и нейтронов. Он задерживается листом бумаги и неспособен проникнуть сквозь кожу человека. Однако он становится чрезвычайно опасным, если попадает внутрь организма, где вызывает процессы ионизации и распада.

Бета-излучение обладает более высокой проникающей способностью и проходит в ткани человека на 1—2 см.

Гамма-излучение может задерживаться лишь толстой свинцовой или бетонной плитой.

Количество энергии излучения, переданной тканям организма, называется дозой, а количество такой энергии, поглощенной единицей массы облучаемого тела, — поглощенной дозой. Однако при одной и той же поглощенной дозе альфа-излучение гораздо опаснее (в 20 раз) бета-и гамма-излучений. Пересчитанная с учетом этого доза считается эквивалентной дозой.

Радионуклиды разделяются на естественные — образовавшиеся на начальном этапе эволюции Земли и при последующих геологических процессах, и искусственные — полученные человеком в атомных реакторах и других энергетических установках.

Основную часть облучения (более 80% годовой эффективной эквивалентной дозы) население земного шара получает от естественных источников радиации. Зоны повышенной радиоактивности распределены на территории России неравномерно. Они известны как в европейской части, так и в Зауралье, на Полярном Урале, в Западной Сибири, Прибайкалье, на Дальнем Востоке, Камчатке, северо-востоке. В большинстве комплексных пород, геохимически ориентированных на радиоактивные элементы, значительная часть урана находится в подвижном состоянии, легко извлекается и попадает в поверхностные, подземные воды, затем — в пищевую цепь. Именно природные источники ионизирующего излучения в зонах аномальной радиоактивности вносят основной вклад (до 70%) в суммарную дозу облучения населения, равную 420 мбэр/год. Среди естественных радионуклидов наибольшее радиационно-генетическое значение имеют радон и его дочерние продукты распада (радий и др.). Их вклад в суммарную дозу облучения на душу населения составляет более 50%. Радоновая проблема в настоящее время считается приоритетной в развитых странах, и ей уделяется повышенное внимание. Образующиеся при распаде радона радиоактивные продукты в виде мельчайших твердых частиц легко проникают в органы дыхания и осаждаются в них, испуская альфа-лучи. По сообщениям печати, около 8 млн домов США (10% всего количества) наполнены радоном выше принятых норм.

В России радоновой проблеме начали уделять внимание лишь в последние годы. Территория нашей страны в отношении радона слабо изучена. Полученная в предыдущие десятилетия информация позволяет утверждать, что и в Российской Федерации радон широко распространен как в приземном слое атмосферы, подпочвенном воздухе, так и в подземных водах, включая источники питьевого водоснабжения.

Ядерная энергетика при строжайшем выполнении необходимых требований экологически чище по сравнению с теплоэнергетикой, поскольку исключает вредные выбросы в атмосферу (золы, диоксидов углерода и серы, оксидов азота и пр.). Это обстоятельство объясняет строительство и эксплуатацию атомных электрических станций (АЭС), при нормальной работе которых выбросы радионуклидов в окружающую среду незначительны. К настоящему времени, по данным Международного агентства по атомной энергетике (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии). Между тем любая АЭС независимо от уровня ее защиты представляет собой потенциально опасный объект. В зависимости от места аварии на АЭС и ее масштаба возможно загрязнение среды такими радионуклидами, как стронций-90, дезий-137, церий-141, йод-131, рутений-106 и др. Отсюда высокие требования к надежности атомных реакторов, а также соблюдению жестких правил их эксплуатации, гарантирующих безаварийную работу.

Антропогенными источниками радиоактивных загрязнений среды являются радиоактивные аэрозоли, вносимые в атмосферу ядерными взрывами или предприятиями атомной промышленности, а также радиоактивные отходы, сбрасываемые в гидросферу или литосферу. В коммунальных условиях внешнее облучение может практически полностью определяться радиоактивностью строительных материалов (гранита, пемзы, бетонов). Уран и другие радионуклиды могут в значительных количествах выбрасываться в атмосферу при работе ТЭЦ, котельных, автотранспорта. Это связано с тем, что угли, нефти иногда характеризуются повышенной ураноносностью. Площадь такого радиоактивного загрязнения может быть обширной.

В настоящее время радиационная обстановка в России определяется глобальным радиоактивным фоном, наличием загрязненных территорий вследствие кыштымской (1957) и чернобыльской (1986) аварий, эксплуатацией урановых месторождений, предприятий ядерного топливного цикла, судовых ядерно-энергетических установок, региональных хранилищ радиоактивных отходов, а также аномальными зонами ионизирующих излучений, связанных с земными (природными) источниками радионуклидов.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: