Использование хэш-функций

ФГОУ ВПО РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО

 ХОЗЯЙСТВА и ГОСУДАРСТВЕННОЙ СЛУЖБЫ

При ПРЕЗИДЕНТЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЮЖНО-РОССИЙСКИЙ ИНСТИТУТ ФИЛИАЛ

 

КАФЕДРА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Реферат

на тему:

"Технологии криптографической защиты информации с использованием электронной подписи"

 

 

Выполнил:

Студент факультета

юридического факультета

группы № 425

Ильичев Михаил Андреевич

 

Научный руководитель:

Нина Александровна Феоктистова

 

 

Ростов-на-Дону

Год 2014

Содержание

ГЛАВА 1. Назначение и применение ЭП

ГЛАВА 2. История возникновения

Россия

ГЛАВА 3.Алгоритмы

Использование хэш-функций

Симметричная схема

Асимметричная схема

Перечень алгоритмов ЭП

ГЛАВА 4.Подделка подписей

ГЛАВА 5. Управление ключами

Управление открытыми ключами

Хранение закрытого ключа

ГЛАВА 6. Виды электронной подписи

ГЛАВА 7. Использование ЭП

ГЛАВА 8.Криптографическая основа

ЗАКЛЮЧЕНИЕ

Список литературы                                                                                                        



Назначение и применение ЭП

 

Электронная подпись (ЭП), Электронная цифровая подпись (ЭЦП) — реквизит электронного документа, полученный в результате криптографического преобразования информации с использованием закрытого ключа подписи и позволяющий установить отсутствие искажения информации в электронном документе с момента формирования подписи и проверить принадлежность подписи владельцу сертификата ключа подписи.

Электронная подпись предназначена для идентификации лица, подписавшего электронный документ, и является полноценной заменой (аналогом) собственноручной подписи в случаях, предусмотренных законом.

Использование электронной подписи позволяет осуществить:

1. Контроль целостности передаваемого документа: при любом случайном или преднамеренном изменении документа подпись станет недействительной, потому что вычислена она на основании исходного состояния документа и соответствует лишь ему.

2. Защиту от изменений (подделки) документа: гарантия выявления подделки при контроле целостности делает подделывание нецелесообразным в большинстве случаев.

3. Невозможность отказа от авторства. Так как создать корректную подпись можно, лишь зная закрытый ключ, а он известен только владельцу, он не может отказаться от своей подписи под документом.

4. Доказательное подтверждение авторства документа: Так как создать корректную подпись можно, лишь зная закрытый ключ, а он известен только владельцу, он может доказать своё авторство подписи под документом. В зависимости от деталей определения документа могут быть подписаны такие поля, как «автор», «внесённые изменения», «метка времени» и т. д.


2. История возникновения

В 1976 году Уитфилдом Диффи и Мартином Хеллманом было впервые предложено понятие «электронная цифровая подпись», хотя они всего лишь предполагали, что схемы ЭЦП могут существовать. В 1977 году, Рональд Ривест, Ади Шамир и Леонард Адлеман разработали криптографический алгоритм RSA, который без дополнительных модификаций можно использовать для создания примитивных цифровых подписей. В 1984 году Шафи Гольдвассер, Сильвио Микали и Рональд Ривест первыми строго определили требования безопасности к алгоритмам цифровой подписи. Ими были описаны модели атак на алгоритмы ЭЦП, а также предложена схема GMR, отвечающая описанным требованиям (Криптосистема Гольдвассер — Микали).

В России

В 1994 году Главным управлением безопасности связи ФАПСИ был разработан первый российский стандарт ЭЦП — ГОСТ Р 34.10-94 «Информационная технология. Криптографическая защита информации. Процедуры выработки и проверки электронной цифровой подписи на базе асимметричного криптографического алгоритма».

В 2002 году для обеспечения большей криптостойкости алгоритма взамен ГОСТ Р. 34.10-94 был введён одноимённый стандарт ГОСТ Р. 34.10-2001, основанный на вычислениях в группе точек эллиптической кривой[6]. В соответствии с этим стандартом, термины «электронная цифровая подпись» и «цифровая подпись» являются синонимами.

1 января 2013 года ГОСТ Р. 34.10-2001 заменён на ГОСТ Р. 34.10-2012 «Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи.»



Алгоритмы

Существует несколько схем построения цифровой подписи:

1. На основе алгоритмов симметричного шифрования. Данная схема предусматривает наличие в системе третьего лица — арбитра, пользующегося доверием обеих сторон. Авторизацией документа является сам факт зашифрования его секретным ключом и передача его арбитру.

2. На основе алгоритмов асимметричного шифрования. На данный момент такие схемы ЭП наиболее распространены и находят широкое применение.

Кроме этого, существуют другие разновидности цифровых подписей (групповая подпись, неоспоримая подпись, доверенная подпись), которые являются модификациями описанных выше схем. Их появление обусловлено разнообразием задач, решаемых с помощью ЭП.

 

Использование хэш-функций

 

Поскольку подписываемые документы — переменного (и как правило достаточно большого) объёма, в схемах ЭП зачастую подпись ставится не на сам документ, а на него хэш. Для вычисления хэша используются криптографические хэш-функции, что гарантирует выявление изменений документа при проверке подписи. Хэш-функции не являются частью алгоритма ЭП, поэтому в схеме может быть использована любая надёжная хэш-функция. Использование хэш-функций даёт следующие преимущества:

· Вычислительная сложность. Обычно хэш цифрового документа делается во много раз меньшего объёма, чем объём исходного документа, и алгоритмы вычисления хэша являются более быстрыми, чем алгоритмы ЭП. Поэтому формировать хэш документа и подписывать его получается намного быстрее, чем подписывать сам документ.

· Совместимость. Большинство алгоритмов оперирует со строками бит данных, но некоторые используют другие представления. Хэш-функцию можно использовать для преобразования произвольного входного текста в подходящий формат.

· Целостность. Без использования хэш-функции большой электронный документ в некоторых схемах нужно разделять на достаточно малые блоки для применения ЭП. При верификации невозможно определить, все ли блоки получены и в правильном ли они порядке.

Использование хэш-функции не обязательно при электронной подписи, а сама функция не является частью алгоритма ЭП, поэтому хэш-функция может использоваться любая или не использоваться вообще.

В большинстве ранних систем ЭП использовались функции с секретом, которые по своему назначению близки к односторонним функциям. Такие системы уязвимы к атакам с использованием открытого ключа (см. ниже), так как, выбрав произвольную цифровую подпись и применив к ней алгоритм верификации, можно получить исходный текст. Чтобы избежать этого, вместе с цифровой подписью используется хэш-функция, то есть, вычисление подписи осуществляется не относительно самого документа, а относительно его хэша. В этом случае в результате верификации можно получить только хэш исходного текста, следовательно, если используемая хэш-функция криптографические стойкая, то получить исходный текст будет вычислительно сложно, а значит, атака такого типа становится невозможной.

 

Симметричная схема

Симметричные схемы ЭП менее распространены чем асимметричные, так как после появления концепции цифровой подписи не удалось реализовать эффективные алгоритмы подписи, основанные на известных в то время симметричных шифрах. Первыми, кто обратил внимание на возможность симметричной схемы цифровой подписи, были основоположники самого понятия ЭП Диффи и Хеллман, которые опубликовали описание алгоритма подписи одного бита с помощью блочного шифра. Асимметричные схемы цифровой подписи опираются на вычислительно сложные задачи, сложность которых еще не доказана, поэтому невозможно определить, будут ли эти схемы сломаны в ближайшее время, как это произошло со схемой, основанной на задаче об укладке ранца. Также для увеличения криптостойкости нужно увеличивать длину ключей, что приводит к необходимости переписывать программы, реализующие асимметричные схемы, и в некоторых случаях перепроектировать аппаратуру. Симметричные схемы основаны на хорошо изученных блочных шифрах.

В связи с этим симметричные схемы имеют следующие преимущества:

· Стойкость симметричных схем ЭП вытекает из стойкости используемых блочных шифров, надежность которых также хорошо изучена.

· Если стойкость шифра окажется недостаточной, его легко можно будет заменить на более стойкий с минимальными изменениями в реализации.

 

Однако у симметричных ЭП есть и ряд недостатков:

· Нужно подписывать отдельно каждый бит передаваемой информации, что приводит к значительному увеличению подписи. Подпись может превосходить сообщение по размеру на два порядка.

· Сгенерированные для подписи ключи могут быть использованы только один раз, так как после подписывания раскрывается половина секретного ключа.

 

Из-за рассмотренных недостатков симметричная схема ЭЦП Диффи-Хелмана не применяется, а используется её модификация, разработанная Березиным и Дорошкевичем, в которой подписывается сразу группа из нескольких бит. Это приводит к уменьшению размеров подписи, но к увеличению объема вычислений. Для преодоления проблемы «одноразовости» ключей используется генерация отдельных ключей из главного ключа.

 

Асимметричная схема

Асимметричные схемы ЭП относятся к криптосистемам с открытым ключом. В отличие от асимметричных алгоритмов шифрования, в которых шифрование производится с помощью открытого ключа, а расшифровка — с помощью закрытого, в схемах цифровой подписи подписание производится с применением закрытого ключа, а проверка подписи — с применением открытого.

Общепризнанная схема цифровой подписи охватывает три процесса:

· Генерация ключевой пары. При помощи алгоритма генерации ключа равновероятным образом из набора возможных закрытых ключей выбирается закрытый ключ, вычисляется соответствующий ему открытый ключ.

· Формирование подписи. Для заданного электронного документа с помощью закрытого ключа вычисляется подпись.

· Проверка (верификация) подписи. Для данных документа и подписи с помощью открытого ключа определяется действительность подписи.

 

Для того, чтобы использование цифровой подписи имело смысл, необходимо выполнение двух условий:

· Верификация подписи должна производиться открытым ключом, соответствующим именно тому закрытому ключу, который использовался при подписании.

· Без обладания закрытым ключом должно быть вычислительно сложно создать легитимную цифровую подпись.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: