Многоэлектронные атомы и Периодическая таблица элементов

 

Свойства атомарной и молекулярной материи определяются квантовомеханическими особенностями атомов, из которых состоит вещество. Обычная поваренная соль — это хлорид натрия, NaCl. Na — это символ атома натрия. Его атомный номер — 11. Атомный номер — это число протонов в ядре, то есть величина положительного заряда ядра. У атома натрия 11 протонов в ядре и 11 отрицательно заряженных электронов. Хлор (обозначается Cl) имеет атомный номер 17. У атома хлора 17 протонов в ядре и 17 электронов. Когда поваренную соль, состоящую из маленьких белых кристаллов NaCl, опускают в воду, она растворяется. В воде Na становится положительно заряженным ионом натрия Na+ (это натрий, потерявший один электрон), хлор обращается в отрицательно заряженный хлорид-ион Cl− (это хлор, присоединивший дополнительный электрон). Натрий отдаёт электроны хлору, и в результате получается катион натрия (положительно заряженный ион) и анион хлора (отрицательно заряженный ион). Заряды, которые несут катион натрия и анион хлора, делают эти ионы легко растворимыми в воде.

Метан — это природный газ, горящий в наших печах, в газовых сушилках для одежды и на тепловых электростанциях. Его химическая формула CH4. Это означает, что он состоит из одного атома углерода (символ C, атомный номер 6), связанного с четырьмя атомами водорода (символ H, атомный номер 1). Метан не превращается в ионы, попадая в воду. В действительности он не растворяется в воде. Если не разогреть его до очень высокой температуры, как в пламени, он вообще не распадается на части. Почему NaCl распадается на отдельные ионы Na+ и Cl− при растворении в воде, почему углерод всегда образует четыре химические связи и почему метан не распадается на части в воде, образуя ионы? Ответы на эти вопросы и объяснение множества свойств всех атомов можно получить, рассматривая природу многоэлектронных атомов и совокупность систематизированной информации об атомах, содержащейся в Периодической таблице элементов.

 

Водород — особый

 

Атом водорода отличается от всех прочих атомов, и это отличие чрезвычайно важно. Атом водорода состоит из положительно заряженного ядра (протона) и одного отрицательно заряженного электрона. Единственное электростатическое взаимодействие в нём — это притяжение электрона к протону, поскольку противоположно заряженные частицы притягиваются. Следующий по простоте атом — гелий. Гелий состоит из положительно заряженного ядра с зарядом +2 (символ He, атомный номер 2) и двух электронов, каждый с отрицательным зарядом −1. Каждый электрон притягивается к ядру; кроме того, два электрона отталкиваются друг от друга, поскольку оба заряжены отрицательно. Это взаимодействие называют электрон-электронным отталкиванием{15}. Поскольку атом водорода имеет лишь один электрон, в нём нет электрон-электронного отталкивания.

На диаграмме энергетических уровней атома водорода (рис. 10.1) орбитали с одинаковым главным квантовым числом n   имеют одну и ту же энергию. Таким образом, орбитали 2 s и 2 p обладают одинаковой энергией. У орбиталей 3 s, 3 p и 3 d энергия тоже одинакова и т. д. Тот факт, что энергия зависит лишь от главного квантового числа, является следствием наличия у водорода единственного электрона. На рис. 10.2, 10.7 и 10.8 формы s -, p - и d -орбиталей существенно различаются. Однако в атоме водорода электрон в среднем находится на одинаковом расстоянии от ядра независимо от формы орбиталей. Поэтому он обладает одинаковой энергией вне зависимости от того, находится он на 3 s -, 3 p - или 3 d -орбитали. Почему? Потому что электрон испытывает одинаковое притяжение к ядру, если усреднять его по пространственному распределению, задаваемому волновыми функциями 3 s, 3 p или 3 d.

 

Формы орбиталей важны для атомов крупнее водорода

 

При наличии в атоме более чем одного электрона форма орбиталей становится важна. В атоме гелия, если два его электрона поместить на 2 s -орбиталь, энергия будет ниже, чем если поместить их на 2 p -орбиталь. В среднем два электрона на 2 s -орбитали находятся дальше друг от друга, чем два электрона на 2 p -орбитали. Электрон-электронное отталкивание увеличивает энергию. Поскольку два электрона на 2 s -орбитали находятся дальше друг от друга, электрон-электронное отталкивание (повышающее энергию) будет не таким сильным, как если бы два электрона находились на 2 p -орбитали. Поэтому в многоэлектронных атомах (во всех атомах, кроме водорода) 2 s -орбиталь имеет более низкую энергию, чем 2 p -орбиталь. При n  =3 два электрона на 3 s -орбитали в среднем находятся дальше друг от друга, чем если бы они занимали 3 p -орбиталь, а два электрона на 3 p -орбитали находятся дальше друг от друга, чем если бы они находились на 3 d -орбитали. Поэтому 3 s -орбиталь ниже по энергии, чем 3 p -орбитали, которые, в свою очередь, ниже по энергии, чем 3 d -орбитали. Однако 3 s -орбитали выше по энергии, чем 2 s -орбитали. В среднем электроны на 3 s -орбитали находятся дальше от ядра, поскольку 3 s -орбиталь больше, чем 2 s -орбиталь (см. рис. 10.2, 10.5 и 10.6), а значит, слабее притягиваются к ядру. Следствием более слабого притяжения является более высокая энергия. Притяжение к ядру связывает электрон с ядром. Принятое в физике соглашение о знаке потенциальной энергии устанавливает, что более сильная связь соответствует более низкой энергии. Электроны проваливаются в притягивающий колодец положительно заряженного ядра. Чем сильнее притяжение, тем глубже погружается электрон в потенциальную яму и тем больше нужно энергии, чтобы извлечь из неё электрон, то есть оторвать его от ядра.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: