Неподвижная точка с параметром

Если преобразователь программ вычислимо зависит от некоторого параметра, то и неподвижную точку можно выбрать вычислимо зависящей от этого параметра. Точный смысл этого утверждения таков:

Теорема 5. Пусть U — главная универсальная функция для класса вычислимых функций одного аргумента, а h — всюду определённая вычислимая функция двух аргументов. Тогда существует всюду определённая вычислимая функция n одного аргумента, которая по любому р указывает неподвижную точку для функции h , так что  , или, другими словами, U(h(p,n(p)),x) = U(n(p),x) при всех р и х (как обычно, обе части могут быть одновременно не определены).

Мы видели, что неподвижная точка строится конструктивно. Поэтому если мы ищем неподвижную точку для функции h , вычислимо зависящей от параметра р, то и результат нашего построения будет вычислимо зависеть от параметра р.

Конечно, можно было бы формально записать рассуждение, реализующее этот план, но оно довольно громоздко (и вряд ли от этого доказательство станет более понятным).

В этой теореме мы предполагали, что семейство функций h состоит из всюду определённых функций. На самом деле это не обязательно: для произвольного вычислимого семейства вычислимых функций h (другими словами, для произвольной вычислимой функции h двух аргументов) существует всюду определённая вычислимая функция n одного аргумента с таким свойством: при каждом р либо функция h не определена в точке n(р), либо n(р) является неподвижной точкой функции h .


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: