Понятие «вектор» в школьном курсе математики и физики

Одним из фундаментальных понятий современной математики является вектор. Векторы находят широкое применение в других науках (физике, астрономии), так как позволяют упростить рассмотрение некоторых вопросов, а также решение задач этих наук.

В учебной литературе существуют различные трактовки понятия «вектор»: неопределяемое понятие (В.Г. Болтянский, М.Б. Волович, А.Д. Семушин) - это параллельный перенос (А.Н. Колмогоров); класс эквивалентных направленных отрезков (В.Г. Базылев) и др.

В школьном курсе геометрии векторы изучались не всегда. Например, в учебнике А.П. Киселева это понятие отсутствовало. Позже в учебнике А.Н. Колмогорова преобразование параллельного переноса отождествлялось с вектором. С математической и логической точки зрения определение вектора в этой книге не вызывало никаких сомнений, но подвергалось критике методистами. Данное понятие не усваивалось учащимися, определение заучивалось формально. Поэтому в ныне действующих учебниках геометрии вектор рассматривается как направленный отрезок. Хотя это определение с математической точки зрения не является вполне корректным (поскольку в математике обычно имеют дело со свободными векторами), но такой подход дает наглядное представление о векторе, осуществляется связь с физикой, в которой вектор тоже рассматривается как направленный отрезок.

В теме «Векторы на плоскости и в пространстве» изучаются следующие вопросы: понятие вектора, модуль вектора, сонаправленные векторы, равенство векторов, действия над векторами (сложение, вычитание, умножение вектора на число, скалярное произведение векторов).

В физике понятие вектора особенно широко используется в разделе «Механика».

Векторная запись имеет важные преимущества для теоретических вопросов, так как векторные уравнения не зависят от выбора системы отсчета и сохраняются при переходе от одной системы отсчета к другой: векторная запись всегда короче. Однако векторная запись вызывает трудности у учащихся, особенно при изучении разделов «Кинематика» и «Динамика». В большинстве ныне действующих школьных учебниках по физике изложение механики ведется на векторной основе с применением координатного метода, что позволяет в обобщенной форме записывать уравнения движения и решать задачи. При решении задач школьниками должны переходить от векторной записи уравнений через проекции величин на выбранную ось к скалярной записи. Некоторые авторы школьных учебников физики, например, Н.М. Шахмаев, выступают против векторного и координатного метода в изучении механики и считают, что наиболее простым, наглядным и достаточным для школьного курса физики является траекторный метод, так как в школе изучается простой материал, в основном прямолинейное движение в инерциальных системах отсчета. Важной особенностью механики является введение векторной записи формул перемещения, скорости, ускорения, сложение перемещения, скоростей при изучении относительности движения.

С понятия перемещения начинается изучение векторных величин в физике и действие над ними. Сложения векторов по правилу треугольника и параллелограмма, изученное в математике, наглядно иллюстрируем с помощью демонстрации движения тел в разных системах отсчета. Векторный характер скорости вытекает из того, что перемещение является вектором, при доказательстве применяем действие деления/умножения вектора на скаляр. Чтобы учащимся легче было применять знания из математики при изучении физики, учителю физики важно согласовывать свои требования, методы и стиль работы с преподавателями математики. Ученики должны знать, что векторные величины характеризуются абсолютным значением (модулем), направлением и геометрическим способом сложения - это самое важное в определении вектора, так как не все физические величины, имеющие модуль и направление, являются векторными. Например, сила тока имеет модуль и направление, но является скалярной величиной.

Большие сложности у учащихся возникают в определении знака проекции вектора перемещения, скорости и ускорения на оси координат. Определение знака проекций векторов на ось отрабатываем многократными упражнениями, сначала рассматривая одномерное, затем двумерное движение.

Учащиеся должны помнить, что определить знак проекции вектора на ось можно двумя способами: как разность координат проекций конца и начала вектора на ось, так и путем сравнения направления вектора с направлением оси координат (если совпадают по направлению, то проекция положительна, не совпадают - отрицательна).

Чтобы школьники хорошо ориентировались в различии векторных величин и их проекций, важно решать задачи не только на определение координаты тела в любой момент времени, но и графические задачи, которые могут проиллюстрировать функциональные зависимости между проекциями векторных физических величин. Учащиеся должны понимать, что построение графиков векторных величин невозможно, так как векторные величины характеризуются направлением, поэтому строим графики только для их проекций. Мы предлагаем такие задания: построить по графику скорости графики ускорения, перемещения, координаты, пути, располагая их один под другим и сопровождая свои рассуждения алгебраическими уравнениями, описывающими характер изменения проекций данных величин, а также рисунком, показывающим направление векторных величин по отношению к траектории движения и выбранной оси координат. Сопоставление графиков рассматриваемых величин способствует формированию основных понятий кинематики, позволяет анализировать характер зависимости между величинами, записывать уравнения движения. «Читая» графики, учащиеся убеждаются, что по характеру изменения проекции одной из величин можно определить все величины, характеризующие движение тела в данный момент времени.

Таким образом, осуществление единого подхода к введению понятия «вектор» в школьном курсе математики и физики позволяет добиться не только более глубокого усвоения данного понятия, но и овладеть методами построения некоторых вопросов физических теорий и решения сложных физических задач.

 

ВЕКТОРЫ

В физике мы часто встречаемся с векторами, т. е. с величинами, которые характеризуются не только число­вым значением, но и направлением. Примерами таких вели­чин могут служить отрезок, соединяющий начало коорди­нат с данной точкой; скорость движения материальной точки; сила, действующая на тело.

Если тело движется по определенной линии, например по прямому рельсовому пути, то положение тела можно определять расстоянием от определенной точки данной линии, измеренным вдоль этой линии. Вдоль заданной ли­нии движение возможно лишь в двух направлениях, кото­рые можно различать, приписывая одному направлению знак плюс, а противоположному — знак минус.

Если же нам известно, что тело движется по плоскости (или в пространстве), то мы не сможем указать положения тела в данный момент времени, если задано только расстояние тела от определенной точки; необхо­димо задать еще направление линии, соединяющей тело с этой точкой (началом координат). Точно так же, задавая скорость тела, надо указывать ее величину и направле­ние. Величины, имеющие направление, называются векто­рами. Мы будем обозначать их полужирным шрифтом или буквами со стрелкой наверху. В отличие от векторов вели­чины, не имеющие направления, называют скалярами. При­мерами скаляров служат масса тела, его энергия, темпера­тура тела в какой-либо точке. Пока мы не рассматривали векторов, специальное слово «скаляр» можно было не вво­дить в употребление.

Векторы можно рассматривать в трехмерном простран­стве или на плоскости (т. е. в «двумерном пространстве»).

 

 

Во введении мы уже отмечали, что в точных науках пользуются величинами двух видов: скалярными и вектор­ными.

Скалярная величина (скаляр) — это величина, характери­зующаяся только числом. Число получается при измерении заданной величины с помощью выбранной единицы измере­ния.

Примеры скалярных величин:

—длина стального стержня L = 0,5 м;

—температура воздуха t  = 22  или t =15 ;

—отвлеченное число, например 7, тоже является скаляром.

Величина, которая характеризуется не только числом, но и направлением в пространстве, называется векторной величиной (вектором). Вот примеры векторов: направленный отрезок, скорость, ускорение, сила, действующая в некото­рой точке тела, и т. д. Векторы в виде направленных от­резков прямой широко применяются и в геометрии.

Вектор определяется положе­нием прямой, на которой он лежит, стороной, куда он обращен на этой прямой, и своей длиной. Незави­симо от того, какую величину он представляет (скорость или силу и т. д.), он изображается в виде пря­молинейного отрезка со стрелкой на конце. Концы А и В от­резка АВ, изображающего вектор, называются соответственно началом и концом вектора. Длина вектора, отложенная в определенном масштабе, является количественной характеристикой вектора. Вектор мы будем обозначать одной буквой с чертой над ней или двумя буквами с чертой над ними, причем первая буква отметит начало, а вторая конец вектора: . Длина век­тора называется также модулем вектора. Модуль вектора а обозначают |а| или а.

Различают свободные, скользящие и связанные векторы. Свободный вектор мы можем переносить параллельно са­мому себе в любое место пространства, не изменяя этим его значение. Как правило, мы и будем пользоваться сво­бодными векторами. Скользящий вектор может быть выб­ран где угодно вдоль одной прямой линии. Так, например, вектор угловой скорости при вращательном движении мо­жет иметь начало в любой точке оси вращения тела, всег­да располагаясь вдоль этой оси. У связанных векторов его начало (точка приложения) всегда должно быть зафиксиро­вано.

Векторы, лежащие на одной прямой или на параллель­ных прямых, называют коллинеарными.

Векторы, равные по длине (по модулю), оказываются не­равными между собой, если они различно направ­лены. Показанные на рис. 23 векторы  и ,  и — не­равные векторы, а векторы  и —равные.

 

Рис. 23 РАВЕНСТВО ВЕКТОРОВ

Векторы называются равными, если они коллинеарны, имеют одинаковые модули и одинаковые направления.

Любое число заданных векторов мы можем „привести к общему началу", т. е. построить векторы, соответственно равные данным и имеющие общее начало в произвольно выбранной точке (рис. 24).

 

Как мы уже говорили, вектор определяется величиной и направлением. Приведём примеры, показывающие, что векторы, одинаковые по модулю, но направленные различно, приводят к разным результатам.

Некоторая сила тяги, приложенная к вертолету, нахо­дящемуся в воздухе, заставляет его подниматься вертикаль­но. Такая же по величине сила тяги, приложенная к тому же вертолету, но уже в другом направлении, заставляет его перемещаться горизонтально.

Брошен камень с начальной скоростью , направленной горизонтально. Камень, описав траекторию, близкую к па­раболе, упадет на некотором расстоянии от проекции на поверхность земли той точки, в которой он был брошен. Тот же камень, брошенный с той же по величине началь­ной скоростью, но теперь направленной вниз, пролетит по вертикали и упадет в точке, которая является проекцией на поверхность земли точки бросания.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ВЕКТОРОВ. УМНОЖЕНИЕ ВЕКТОРОВ НА ЧИСЛО

Теперь мы покажем ряд операций, которые произво­дятся над векторами в векторном исчислении. Эти опера­ции являются обобщением тех действий, которые производятся над векторными величинами в физике, механике и математике.

Чтобы пояснить, как производится сложение двух век­торов  и , рассмотрим примеры. Лодка плывет поперек реки с постоянной (относительно воды) скоростью  (рис. 25). Вода перемещается с постоянной скоростью и вдоль бере­гов. За время t лодка переместится из точки А в точку С. Как происходит перемещение лодки?

Как мы уже говорили, вектор определяется величиной и направлением. Приведем примеры, показывающие, что векторы, одинаковые по модулю, но направленные различ­но, приводят к разным результатам.

Если бы она двигалась со скоростью  в неподвижной воде, то прошла бы за время t путь, равный vt, направ­ленный перпендикулярно к берегам. А если бы лодка пе­ремещалась без усилий гребца и только под влиянием течения и реки, то за время t она прошла бы путь ut, направленный вдоль берегов. Чтобы найти действительное (в условиях поставленной задачи) перемещение лодки wt, надо от точки А провести отрезок , направленный по­перек реки, а затем из точки В „вдоль течения" отложить отрезок :

 +  = .

Мы привели простой пример сложения двух направлен­ных перемещений точки, т. е. пример сложения двух век­торов.

Хорошо известен читателю способ сложения двух сил по правилу параллелограмма. Поэтому напоминаем его не входя в подробности. К материальной точке А (рис. 26) приложены силы  и . Для определения равнодейст­вующей силы  строим параллелограмм ABCD. Диагональ параллелограмма АС определяет (по направлению и по величине) равнодействующую силу .

Итак, суммой двух векторов является диагональ параллелограмма (построенного на этих векторах) и проходя­щая через общее начало слагаемых векторов.

Очевидно, что сумма двух векторов может быть найдена и по такому правилу (правило треугольника): если из конца первого вектора провести второй, то суммой двух векторов явится вектор, соединяющий начало первого вектора с концом второго.

В самом деле, и при нахождении равнодействующей двух сил (см. рис. 26) мы могли из конца вектора провести вектор  =  (  =  как противоположные стороны параллелограмма) и, соединив начало вектора  с концом  = , найти равнодействующую .

Производя операцию сложения векторов, пользуются принятым в алгебре знаком сложения:

 =  + .

Векторы  и называют слагаемыми векторами, вектор —их суммой (или геометрической суммой, или результирующим вектором).

Из построения геометрической суммы (рис. 27) мы за­мечаем, что

 +  =  +  .

Следовательно, при сложении векторов справедлив переместительный (коммутативный) закон: геометриче­ская сумма не меняется от перестановки слагаемых. Заме­тим, что не все операции векторного исчисления облада­ют свойством коммутативности. В этом мы убедимся позд­нее. Чтобы сложить любое число векторов (рис. 28), надо к концу первого вектора приложить начало второго. Затем, построив второй вектор, к его концу приложить начало третьего и т. д.; наконец, построив последний из слагае­мых векторов, соединить начало первого вектора и конец последнего. Суммой данной системы векторов является вектор, замыкающий построенный таким образом много­угольник, причем начало результирующего вектора сов­падает с началом первого вектора, а конец результирующего вектора совпадает с концом последнего из слагаемых векторов.

Заметим, что операция сложения векторов подчиняется сочетательному (ассоциативному) закону, например:

 + ( + ) = (  + ) + .

В справедливости приведенного тождества читатель убедится, рассмотрев рис. 29, где приведен пример раз­личного „сочетания" слагаемых векторов.

Разумеется, операцию сложения трех и большего числа векторов можно представить себе не только в плоско­сти, но и в виде некоторого пространственного „зигзага", состоящего из ряда направленных прямых. При этом, пользуясь переместительным и сочетательным законами, мы можем складывать векторы в произвольном порядке, заменяя, если пожелаем, любое их количество соответствующим результирующим вектором.

На рис.30 показано геометрическое сложение трёх расположенных в пространстве векторов. Изучая этот рисунок, читатель убедится в том, что если сумма двух векторов изображается диагональю параллелограмма, то сумма трех пространственных векторов изображается ди­агональю параллелепипеда, построенного так, что данные векторы являются его ребрами.

Рассматривая разность двух векторов, обратимся к простому примеру. Тихоходный самолет летит со скоростью  строго против ветра. Скорость ветра  по модулю рав­на скорости самолета: | | = |  [. Какова скорость самоле­та относительно земли?

Так как к самолету „приложены" две равные по мо­дулю, но противоположные по направлению скорости, то самолет относительно земли остается неподвижным, его „результирующая" скорость равна нулю.

В таком случае мы можем записать:

 +  = 0

или, в общем виде,

 + = 0.

Здесь вектор равен по величине, но противоположен по направлению вектору , что принято записывать так:

 = — .

Вычесть из вектора  + вектор , всё равно что прибавить к вектору  + вектор - , противоположный :

 - =  + (— ).

Интересно отметить, что параллелограмм, построенный на заданных векторах  и (рис. 31), дает не только сумму векторов  + , но и разность векторов  - . Сумма векторов ОВ совпадает с диагональю, проходящей через общее начало двух заданных векторов, а разность векто­ров— с другой диагональю параллелограмма.

В самом деле:

 =  +  = —  +  =  - .

Заметим, что в векторном исчислении не вводят понятий «положительный вектор" или „отрицательный вектор". Вектор— , противоположный вектору , не является отрицательным вектором. Нельзя также утверждать, например, что  >  или  < . Можно сравнивать лишь модули (длины) векторов, где и уместны понятия „больше" или „меньше".

Что касается принятого в векторном исчислении поня­тия нулевого вектора (0, нуль-вектор), то заметим следующее: сумма системы векторов равна 0, если конец пос­леднего слагаемого вектора совпадает с началом первого (рис. 32). Таково, например, условие равновесия материальной точки, находящейся под действием нескольких сил.

Нуль-вектор теряет не только свое количественное зна­чение, но и качество направленности: направление этого вектора считают неопределенным. Подобно тому, как это принято в арифметике, сумму одинаковых векторов представляют в виде произведения вектора на целое положительное число, например:

 + +  = 3 ,

и вообще:

 +  +  +... +  = n ,

где n — число равных слагаемых векторов.

В векторное исчисление вводят и операцию умножения вектора на любое число m. Если m положительное число, то при умножении вектора на него он „растягивается" в m раз, сохраняя свое направление. Однако это „растяже­ние" надо понимать в широком смысле слова. Так, при умножении вектора  на m =  мы получаем новый век­тор, длина которого уменьшилась в 3 раза. Если же век­тор  умножается на отрицательное число, то он не толь­ко претерпевает „растяжение", но и меняет свое направ­ление на противоположное.

Операция умножения вектора на число обладает сле­дующими свойствами, аналогичным свойствам умножения чисел в обычной алгебре:

1) сочетательное (ассоциативное) свойство:

m(n ) = (mn) ;

2) распределительное (дистрибутивное) свойство по отношению к числовому (скалярному) множителю:

(m + n)  = m  + n ;

3) распределительное (дистрибутивное) свойство по отношению к векторному множителю:

m (  + ) = m  + m .

Эти свойства становятся ясными, если их выразить с по­мощью наглядного геометрического языка. Поясним пер­вое, сочетательное, свойство умножения: если мы растянем вектор  сначала в n раз, а затем вновь полученный век­тор n  еще в m раз, то будем иметь такой же вектор, какой мы получаем при растяжении  непосредственно в mn раз. В этом случае мы можем сначала „сочетать" чис­ловые сомножители вместо последовательного умножения вектора на каждый из множителей.

Распределительное по отношению к числовому множи­телю свойство можно пояснить так: при растяжении векто­ра а непосредственно в (m + n) раз получается такой же вектор, как при сложении вектора , растянутого в m раз с вектором , растянутым в n раз. Это свойство позволяет „распределять" векторный множитель по числовым мно­жителям.

Третье, распределительное по отношению к векторно­му множителю, свойство поясняет рис. 33. В самом деле, при растяжении результирующего вектора  +  в m раз мы получаем вектор  = m (  + ), равный сумме двух «уже растянутых» векторов m  и m . Отмеченное равенство получается вследствие пропорциональности сторон двух векторных треугольников, имеющих один   равный (общий) угол.

Третье свойство позволяет «распределить» числовой множитель по двум слагаемым векторного множителя. Очевидно, что это свойство справедливо для суммы не только двух, но и нескольких векторов:

m (  +  + …+ ) = m  +m  +…+ m .

Итак, выполняя операции с векторами, мы можем рас­крывать скобки и производить другие выкладки, аналогич­ные выкладкам обычной алгебры. Поэтому совокупность ряда операций над векторами и получила название вектор­ной алгебры.

Если мы имеем два вектора  и , причем  = m , то вполне очевидно, что такие векторы коллинеарны (парал­лельны между собой). Отметим важное свойство коллинеарных векторов: любой вектор может быть выражен через другой, коллинеарный ему вектор, с помощью выбранного числового (скалярного) множителя. Это свойство выража­ется уже известной простой формулой  = m .

Очевидно, что скалярный множитель равен отношению модулей векторов  и . Этот множитель берется со зна­ком „плюс", если векторы одинаково направлены, и со знаком „минус" в случае их противоположного (обратного) направления.

Если заданный вектор можно выразить через любой, ему коллинеарный, то проще всего этот заданный вектор может быть выражен при помощи единичного вектора.

Единичный вектор—это вектор, коллинеарный данному, и имеющий длину, равную единице.

Единичный вектор одинакового с вектором  направле­ния обозначают символом . Для всякого вектора  мы будем иметь такое выражение:

 = а .

В этой формуле символ а обозначает скалярный мно­житель, равный длине вектора , и символ  — направле­ние вектора.

РАЗЛОЖЕНИЕ ВЕКТОРОВ

Кроме операции сложения векторов, рассматривается и разложение вектора по заданным направлениям. Предва­рительно заметим, что три или большее число векторов называются компланарными векторами, если они, будучи приведены к общему началу, располагаются в одной плоскости. Так, суммарный вектор всегда компланарен с век­торами-слагаемыми-—ведь эти три вектора расположены вдоль сторон одного и того же треугольника.

Всякий заданный вектор может быть разложен на два других компланарных ему вектора или на три неком­планарных ему вектора. Разложение векторов наряду с их вычитанием является вторым обратным действием по от­ношению к операции сложения в векторной алгебре. Раз­ложение векторов часто применяется в теоретической ме­ханике, а также при изучении ряда технических вопросов.

Приведем простые примеры.

При „наборе" самолетом высоты интересуются не толь­ко скоростью самолета, но и его „скороподъемностью", т. е. вертикальной составляющей скорости.

При движении тела, сброшенного с некоторой начальной скоростью, рассматривают не только скорость „вдоль' траектории", но горизонтальную и вертикальную состав­ляющие этой скорости.

Другие примеры разложения сил, скоростей, ускорений и т. д. на составляющие легко приведет и сам читатель.

Заметим, что составляющую вектора называют также; компонентой вектора.

ПРОЕКТИРОВАНИЕ ВЕКТОРОВ НА ОСЬ

Прежде чем ввести следующую операцию векторной алгебры— cкалярное умножение векторов, мы рассмотрим вопрос о проектировании вектора на какое-либо направ­ление, т. е. на ось или на другой вектор.

Пусть мы имеем вектор  =  и ось . Проекцией вектора  ось  называется длина отрезка А В  между основаниями перпендикуляров, опущенных из то­чек А и В на ось .

Проекцию вектора на ось обозначают так:

пр  или а .

Длина проекции берется со знаком плюс, если направ­ление отрезка А В  совпадает с направлением оси , и со знаком минус—в противном случае.

Проекция вектора есть скаляр. Размерность ее такая же, как размерность длины вектора.

Если угол между вектором и осью обозначим  =(), то будем иметь а = acos . Если угол  острый—косинус положителен и а  положительна. Если угол  тупой, то cos  и а  отрицательны.

Итак, всегда проекция вектора на какую-либо ось рав­на произведению длины вектора на косинус угла между вектором и осью.

Отметим основные свойства проекций.

1. Если вектор увеличить (растянуть) в несколько раз, то и проекция его увеличится во столько же раз:

m а  = (ma) .

2. Проекция суммы векторов на некоторую ось равна алгебраической сумме проекций слагаемых векторов на ту же ось (рис. 35):

с  = a  + b

и в общем виде:

(  +  + …+ )  = a + a +…+ a .

Кроме проектирования вектора на ось, применяется и проектирование вектора на другой вектор. Эту проекцию обозначают так:

пр  или а .

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРА

Обратимся к простому примеру, взятому из физики. Точка, получающая перемещение S (рис. 36), находится под действием постоянной (по величине и направлению) силы . Работа A, совершаемая силой при этом переме­щении, равна

А = Fcos , где  — угол между векторами  и .

 

Итак, при определении работы учитывают только сос­тавляющую  силы  по направлению перемещения. Аналогичное выражение очень часто встречается в физике и математике. В результате такой операции мы получаем скаляр, а потому сама операция называется скалярным произведением.

Скалярным или внутренним произведением двух век­торов  и  называется произведение длин этих векто­ров на косинус угла между ними.

Скалярное произведение принято обозначать:

 или  или (, ). Итак,

 = ab cos (). В приведенном примере мы получили работу в виде скалярного произведения вектора силы F и вектора пере­мещения S:

A = .

Непосредственно из определения следует, что скаляр­ное произведение векторов и положительно, если век­торы составляют между собой острый угол, и отрицатель­но, если угол между векторами тупой.

В математике часто пользуются следующими важными свойствами скалярного произведения:

1. Скалярное произведение равно нулю в том и только в том случае, если векторы перпендикулярны. (При этом ни один из векторов  и  не равен нулю.) Действительно, тогда

cos ()= cos  = 0 и =0.

2. Скалярный квадрат вектора равен квадрату его длины:

 = а ,

так как угол между векторами  равен нулю, а cos () = 1.

3. Свойство переместительности. Скалярное произведение не зависит от порядка сомножителей:

 = .

Это свойство следует из определения:

 = ab cos ().

4. Скалярное произведение двух векторов равно произведению длины другого вектора на направление первого. В этом мы убеждаемся, группируя разными способами множители скалярного произведения:

 = a cos () b = а •b;

 = bcos()a = b •a.

5. Скалярное произведение обладает сочетательным свойством по отношению к скалярному множителю или, другими словами, скалярный множитель можно выносить из-под знака скалярного произведения.

В самом деле, очевидно, что

 (m , n ) = manb cos () = mnab cos () = mn (, ).

6. Скалярное произведение подчиняется распредели­тельному закону:

(  + )  =  + .

В самом деле, (  + )  = пр  (  + ) c = (a + b ) c = a c + b c =  + .

Здесь мы использовали только что приведенное на­ми четвертое свойство скалярного произведения, а также другое, известное нам свойство, что проекция суммы век­торов равна сумме их проекций:

пр  (  + ) = a + b .

Таким образом, скалярное умножение векторов дает воз­можность раскрывать скобки.

Свойства скалярного произведения позволяют произ­водить ряд действий, аналогичных действиям обычной ал­гебры, например:

(  + )  =  + + 2  = а  +b  + 2 ;

(  + )( - ) = а  - b .

Пользуясь скалярным умножением векторов, удается очень просто решать некоторые задачи математики и фи­зики. Приведем несколько таких задач.

Задача 1

Дан треугольник ABC (рис, 37). Требуется вывести три­гонометрическую формулу

с  = а  + b  — 2 a b cos с.

Представим стороны треугольника в виде суммы век­торов.

 =  +  .

Помножим обе части этого тождества скалярно сами на себя:

с  = (a + b)  = а + b + 2  = а +b  + 2ab cos (),

но

 () = — с; cos () = cos (  — с) = — cos с.

Следовательно,

с  = а  + b  — 2 a b cos с.

Задача 2

Показать, что сумма квадратов диагоналей параллело­грамма равна сумме квадратов его сторон.

Пусть стороны и диагонали параллелограмма представ­лены в виде таких векторов (рис. 38):

=  +

=  —

(Здесь читатель вспомнит замечание о представлении сум­мы векторов и разности векторов диагоналями параллело­грамма).

Составим следующие тождества: = (  + )

         = (  — )

Или = а + b + 2

   = а + b - 2

Складывая эти тождества, получим +  = 2 а + 2b .

Задача 3

Доказать, что диагонали параллелограмма (см. рис. 38) только в том случае взаимно перпендикулярны, если этот параллелограмм есть ромб.

Напишем известное нам тождество:

(  + )( - ) =а - b ;

оно выражает также то свойство параллелограмма, что скалярное произведение его диагоналей равно разности квадратов его сторон. Но написанное нами скалярное про­изведение только в том случае равно нулю, если  = , Дру­гими словами, диагонали параллелограмма лишь в том случае взаимно перпендикулярны, если равны его сторо­ны, если он является ромбом.

Задача 4

Доказать, что работа равнодействующей  несколь­ких сил , ,..., , приложенных к одной и той же материальной точке М на пути  этой точки, равна ал­гебраической сумме работ составляющих сил.

Действительно, если обе части равенства

= +  +…+

мы умножим скалярно на , то получим

=  + +... + ,

 

а это и значит, что работа равнодействующей силы равна сумме работ составляющих сил.

ВЕКТОРНОЕ УМНОЖЕНИЕ

Сначала укажем еще один способ определения положения точки в пространстве. Выберем некоторую началь­ную точку О (рис. 39) и назовем ее полюсом. Положение любой точки пространства М может быть определено за­данием вектора , идущего от полюса к данной точке. Вектор  мы будем обозначать г и называть радиу­сом-вектором точки М.

В ряде случаев столь простое определение поло­жения точки с помощью по­люса и радиуса-вектора предпочтительнее способа координат.

Векторное произведе­ние двух векторов


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow