Прямой чистый изгиб стержня

(к концам стержня приложены только моменты сил)

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент Мх (рис. 18).

Рис.18. Связь внутреннего усилия и напряжения

Так как Qy=dMx/dz=0, то Mx =const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент Mх по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

.

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 19). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.

Рис.19. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями. При этом часть волокон находится в зоне растяжения (на рис. 19 это – нижние волокна), а другая часть – в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п-п), не меняющим своей длины, напряжения в котором равны нулю.

Если Jx —главный центральный момент инерции относительно оси Ох, для кривизны нейтрального слоя получаем формулу

(4)

Кривизна нейтрального слоя 1/r является мерой деформации стержня при прямом чистом изгибе. 1/r тем меньше, чем больше величина EJх, называемая жесткостью поперечного сечения при изгибе (по аналогии с жесткостью поперечного сечения при растяжении EF).

Подставляя (4) в (2), получаем формулу для нормальных напряжений в виде

(5)


которая была впервые получена Ш. Кулоном в 1773 году. Для согласования знаков изгибающего момента Мх и нормальных напряжений в правой части формулы (5) ставится знак минус, так как при Mх>0 нормальные напряжения при y >0 оказываются сжимающими. Однако в практических расчетах удобнее, не придерживаясь формального правила знаков, определять напряжения по модулю, а знак ставить по смыслу. Нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси (рис. 20), т. е.


Рис.20. Распределение нормальных напряжений

Здесь введена геометрическая характеристика , имеющая размерность м3 и получившая название момента сопротивления при изгибе. Поскольку при заданном Mх напряжения тем меньше, чем больше Wx, момент сопротивления является геометрической характеристикой прочности поперечного сечения изгибе. Приведем моменты сопротивления для простейших форм поперечных сечений.

Рис.21. Конфигурации поперечных сечений бруса

Для прямоугольного поперечного сечения (рис. 21, а) имеем:

Jх=bh3/12, ymax = h/2; Wx = Jx/ymax = bh2/6.

Аналогично для круга (рис. 21 ,б):

Jx = d4 /64, ymax=d/2; Wx = d3 /32,


для кругового кольцевого сечения (рис. 21, в):

Условие прочности при изгибе балки в форме призматического стержня получает вид

;

где: max Mх максимальное значение изгибающего момента (легко определяемое по его эпюре), — допускаемое напряжение на простое растяжение (сжатие). Напомним, что чистый изгиб балки сводится к растяжению и сжатию ее волокон (неравномерному в отличие от деформации растяжения (сжатия) призматического стержня, при котором ).

Замечание.

Моменты инерции и всегда положительны, как суммы положительных слагаемых, центробежный же момент

может быть и положительным и отрицательным, так как слагаемые zydF могут быть разного знака в зависимости от знаков z и у для той или иной площадки. Значит, он может быть равен нулю.

Оси, относительно которых центробежный момент инерции обращается в нуль, называются главными осями инерции. Если начало такой системы помещено в центре тяжести фигуры, то это будут главные центральные оси. Эти оси мы будем обозначать и ; для них .

Справка по теории моментов: https://www.baurum.ru/alldays/?cat=dynamics-solid&id=3895


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: