Эколого-геохимическая оценка воздействия горного предприятия на окружающую среду

Техногенное загрязнение при добыче угля и особенно его сжигании связано с высокой концентрацией многих химических элементов в углях и большой массой сырья, извлекаемого из недр, достигающей ежегодно для всей планеты нескольких миллиардов тонн.

Моноядерные ароматические углеводороды типа бензола оказывают быстрое токсичное действие. Влияние полициклических ароматических углеводородов (ПАУ) ведет к более отдаленным экологическим последствиям, включая канцерогенные.

Геохимия горно-промышленных ландшафтов нефтяных, газовых и угольных месторождений

Геохимические процессы в отдельных горно-промышленных ландшафтах

Нефтегазоносные бассейны. Загрязнение нефтью и нефтепродуктами стало одной из наиболее острых экологических проблем, приобрело региональный и даже глобальный масштабы. Загрязнение окружающей среды нефтью происходит при ее добыче и транспортировке. Западно-Сибирский, Волго-Уральский, Прикаспийский нефтегазоносные бассейны занимают огромные площади, а транспортировка нефти носит уже трансконтинентальный характер. На суше основные очаги загрязнения связаны с нефтепромыслами, занимающими десятки и сотни квадратных километров.

Внутри промыслов центрами формирования техногенных потоков являются эксплуатационные скважины. Особенно сильное загрязнение происходит при авариях на скважинах и нефтепроводах. Кроме районов нефтедобычи техногенное загрязнение происходит в местах переработки и потребления нефти и нефтепродуктов, которые приурочены к промышленным районам.

Модули техногенного давления изменяются от менее 5 т/км2 в Средней и Восточной Сибири, на Дальнем Востоке до 100—200 т/км2 и более на Урале, в Поволжье и Подмосковье [Пер]. Значительное загрязнение нефтью морей и океанов происходит в результате аварий буровых платформ и танкеров.

В районе нефтепромыслов основными загрязнителями являются сырая нефть, высокоминерализованные нефтяные и сточные воды, продукты сжигания попутных газов [Пер].

Техногенное воздействие самой нефти на ландшафты определяется токсичностью ее основных компонентов. Среди них особо опасны для микроорганизмов, водорослей, почвенных животных, растений легкая, наиболее подвижная фракция, состоящая из метановых, циклических (нафтеновых и ароматических) углеводородов. Ароматические углеводороды— наиболее токсичные компоненты нефти.

Среди тяжелых неуглеводородных компонентов нефти преобладают смолы и асфальтены, воздействие которых заключается главным образом в изменении водно-физических свойств нефтезагрязненных почв и пород (цементация порового пространства и т.п.), а также сернистые соединения (сероводород, меркаптаны, сульфиды, свободная сера и др.). Особенно токсичны сероводород и меркаптаны.

Во многих нефтях повышено содержание микроэлементов — ванадия, никеля, кобальта, свинца, меди, урана, мышьяка, ртути, молибдена. Наиболее распространены ванадий и никель, входящие в состав смол и асфальтенов.

Вместе с нефтью в ландшафты поступают соленые воды, которые, как правило, имеют хлоридный кальциевый и натриевый состав часто с минерализацией выше 100 г/л. Нефтяные воды также обогащены иодом, бромом, бором, стронцием, барием.

В составе попутных газов помимо углеводородов — метана, этана, пропана, бутана в некоторых районах, например в Северном Прикаспии, высоко содержание сероводорода (до 20 — 30%) и паров ртути.

Техногенная трансформация природных ландшафтов в районах добычи нефти происходит в результате механических нарушений поверхности (уничтожение растительного покрова, раскорчевка, планировка буровой площади, уменьшение мощности верхней части почвенного профиля, ее уплотнение, погребение фоновых почв и др.), гидродинамических нарушений геологической среды (изменение уровня грунтовых и подземных вод) и геохимического воздействия на отдельные компоненты ландшафтов. Особенности этой трансформации находятся в сложной зависимости от характера и состава загрязнителей, длительности их воздействия, ландшафтно-геохимической обстановки.

Для тайги Пермского Прикамья, Западной Сибири ведущим процессом преобразования ландшафтов является техногенный галогенез [Пер].

При добыче нефти высокоминерализованные воды поступают на поверхность и на фоне дерново-подзолистых почв формируются несвойственные этой природной зоне техногенные битуминозные солончаки, угнетается или уничтожается наземная растительность и почвенная мезофауна. Засоление почв сопровождается изменением емкости поглощения, состава поглощающего комплекса (появление натрия), подщелачиванием почвенных растворов, увеличением содержания органического углерода, изменением группового состава гумуса, оглеением, концентрацией отдельных химических элементов.

В тундровых ландшафтах республики Коми установлено негативное влияние нефтяного загрязнения на морфоанатомические и химические свойства растений — развиваются хлорозы и некрозы листьев, дефолиация и иссушение побегов, карликовость растений, снижается фотосинтетическая активность, утяжеляется изотопный состав углерода, в поврежденных листьях и побегах накапливаются тяжелые металлы[Пер]. Как и в тайге, нефть накапливается в болотных почвах.

В степях и пустынях трансформация загрязненных почв протекает значительно быстрее за счет испарения нефти и минерализации, повышенной микробиологической и ферментативной активности почв. В субтропических серо-коричневых почвах Азербайджана остаточная нефть через год после загрязнения составляет только 30% первоначального количества, т.е. скорость самоочищения почв от нефти здесь в 4 — 5 раз выше, чем в таежной зоне [Пер].

При разработке газовых и нефтяных месторождений и при сгорании факелов в атмосферу выбрасывается большое количество метана и др. углеводородов. Особенно опасная экологическая ситуация складывается в районах добычи и переработки серосодержащих газов, среди которых наиболее токсичен сероводород. Такая обстановка характерна для газовых и нефтяных месторождений Северного и Северо-Восточного Прикаспия.

Угленосные бассейны. К районам добычи угля обычно тяготеют черная и цветная металлургия, тяжелое машиностроение, мощная тепловая энергетика, что затрудняет выделение доли собственно угледобычи в техногенном загрязнении.

Модули техногенного давления угля в конце ХХ века были наиболее высоки в европейских странах-производителях (т/км2 в год) — в Восточной Германии (2593), Чехословакии (1016), Западной Германии (863), Бельгии (623). В целом для территории бывшего СССР, учитывая большую площадь, этот модуль составляет около 29, с очень неравномерным распределением по экологическим районам — от 5 на Дальнем Востоке до 130 в Уральском и Южном районах.

В углях концентрируются свыше 30 химических элементов, содержание которых в сотни и тысячи раз выше, чем в осадочных породах. Состав типоморфной ассоциации зависит от геологических, петрографических и геохимических факторов. В углях накапливаются золото, германий, уран, кадмий, висмут, вольфрам, мышьяк, сурьма, бериллий, цинк, свинец, ртуть, редкоземельные элементы, сера, железо [Пер].

В районах угледобычи техногенное загрязнение связано с отвалами вскрышных пород, шахтными и подотвальными водами, дымами, пылью, аэрозолями, поступающими от предприятий. Так как сам уголь транспортируется за пределы его добычи, то главным источником загрязнения являются отвалы вскрышных пород.

Техногенная геохимическая трансформация ландшафтов в Кизеловском, Подмосковном, Воркутинском бассейнах, выражается в комплексном лито-, гидро-, био- и атмогеохимическом влиянии на природную среду угленосных пород, шахтных вод и атмосферной пыли [ПЕр].

Особенно важную роль играют процессы окисления сульфидов железа и других металлов, содержащихся в углях. В результате резко увеличивается содержание сульфатов в водах и почвах, рН почв снижается до 2 — 3, меняются условия миграции химических элементов, многие переходят из слаборастворимых сульфидов в оксидные и водорастворимые сульфатные формы, формируются сернокислые ландшафты.

В техногенных угленосных наносах и почвах содержание сульфатной серы достигает 60 — 70%, а свободной серы 10 — 20% от валового количества. Поэтому в горно-промышленных ландшафтах происходит не только концентрация многих типоморфных элементов углей, но и их сернокислое выщелачивание, приводящее к формированию оторванных гидрогеохимических аномалий на щелочных и сорбционных геохимических барьерах, иногда на значительном удалении от шахтного комплекса.

В таежных почвах со временем происходит уменьшение кислотности, содержания сернистых соединений и тяжелых металлов, но полностью фоновые параметры не восстанавливаются даже через десятилетия. Сульфаты и поливалентные тяжелые металлы восстанавливаются, образуются аномалии на латеральных сульфидных барьерах В1 — В2. В этих условиях аномалии существуют длительное время и являются потенциальными вторичными источниками загрязнения.

С угледобычей связано и существенное загрязнение полициклическими ароматическими углеводородами, особенно при возгорании отвалов и других видов сжигания угля.

Горно-промышленные ландшафты рудных месторождений. С рудами черных, цветных, благородных и радиоактивных металлов в окружающую среду поступает меньше химических элементов, чем с углем и нефтью, за исключением Сr, Сu, Zn, Fе, и Ni, но степень концентрации металлов в рудах, как правило, значительно выше.

Техногенная трансформация ландшафтов рудных месторождений определяется не только способом добычи, транспортировки, технологией переработки руд, но и многими геолого-геохимическими и ландшафтно-геохимическими факторами — химическим и минеральным составом руд и ореолов, их обогащением рудными элементами относительно местного фона, достигающего сотен и тысяч раз, гидрогеологической обстановкой, природными условиями водной и воздушной миграции и концентрирования загрязнителей.

Загрязнение ландшафтов в районах разрабатываемых рудных месторождений связано:

· с пылением карьеров;

· с пылением и размывом отвалов;

· с рудничными водами;

· с рассеянием рудного материала при транспортировке;

· с выбросами и стоками обогатительных фабрик и горно-металлургических комбинатов;

· с эрозией первичных и вторичных литохимических ореолов месторождений;

· с водными ореолами и потоками в грунтовых, подземных и поверхностных водах.

При разработке железорудных месторождений Курской магнитной аномалии, Урала, Криворожского бассейна преобладает механическая техногенная трансформация природной среды, связанная с извлечением и перемещением огромных объемов горных пород.

Контрастные геохимические аномалии элементов-примесей — Мn, Аs, Zn, Со, Мо, Сr, как правило, не образуются, но в техногенную миграцию вовлекаются значительная их масса.

Состав ассоциации загрязнителей зависит от генетического типа руд. Так, на железорудных месторождениях с высоким содержанием сульфидов в любом климате образуются сернокислые ожелезненные ландшафты, в которых развивается выщелачивание металлов из пород и почв, их миграция в кислых водах на значительное расстояние. Велика зона атмотехногенного влияния месторождений, например,, на карьерах КМА железорудная пыль распространяется на 10 — 15 км [].

Главный и экологически наиболее опасный техногенез связан с предприятиями черной металлургии, располагающимися в непосредственной близости от источников сырья. К ним приурочены контрастные и протяженные техногенные аномалии многих загрязняющих веществ (главным образом тяжелых металлов).

Так, вокруг Магнитогорского металлургического комбината [Т.М. Беляковой и М.В. Понариной[ установлена зона интенсивного загрязнения почв свинцом, цинком, медью и др. тяжелыми металлами, с кларками концентрации соответственно 60, 40 и 30 и суммарными показателями загрязнения Zc = 50 — 100 в радиусе 2 — 5 км от комбината.

Кроме тяжелых металлов обнаружено загрязнение полициклическими ароматическими углеводородами — продуктами сгорания ископаемого топлива, пиролиза и коксохимического производства. В частности, концентрации 3,4 -бензпирена в почвах в эпицентре аномалии на два порядка выше фоновых. Зона углеводородного загрязнения вокруг Магнитогорска фиксируется на расстоянии до 30 км.

ГПЛ районов месторождений цветных и редких металлов. Здесь существуют три вида воздействия рудных элементов на ландшафты. Региональное воздействие проявляется в пределах рудных областей и провинций с металлогенической и геохимической специализацией пород и содержанием основных рудных элементов не более 3 - 5 кларков концентрации (зеленокаменная полоса Урала — Сu, Рудный Алтай — Рb, Zn, Нg и др.)

В рудных районах природные аномалии с контрастностью на порядок выше фона занимают десятки и сотни квадратных километров. На месторождениях с богатыми рудами концентрации цветных и редких металлов, особенно имеющих низкие кларки (Нg, Sb, Сd, Мо, Sn, превышают местный фон в тысячи и десятки тысяч раз, что приводит к загрязнению почв, растений, грунтовых и поверхностных вод токсичными соединениями.

Добыча и переработка руд приводит к еще более высоким уровням содержания тяжелых металлов во всех компонентах техногенных ландшафтов и трансформации геохимической структуры природно-аномального ландшафта. Формы нахождения элементов в рудах и вмещающих породах, степень и характер их выветривания, масштабы оруденения и многие другие факторы определяют направленность этой геохимической трансформации ландшафтов.

В экологическом отношении наиболее опасны сульфидные руды тяжелых металлов, которые при выходе на земную поверхность в процессе природного выветривания и отработки быстро окисляются. Сульфиды превращаются в сульфаты металлов, многие из которых растворимы в воде. Поэтому в районах добычи и переработки цветных руд также возникают сернокислые ландшафты. Это сложная система природных и техногенных зон сернокислого выщелачивания металлов в почвах и водах, сопрягающаяся с щелочными (D1, D5, D9), сорбционными (G1, G5, G9), кислородными (А1, А5, А9) и глеевыми (С1, С9) геохимическими барьерами, на которых металлы концентрируются.

Во многих горно-промышленных районах выделяются три-четыре ландшафтно-функциональные зоны техногенной трансформации природных комплексов.

Первая зона — это шахтно-карьерно-отвальные ГПЛ с практически полной деградацией почвенно-растительного покрова с высокими концентрациями металлов в пыли, техногенных наносах, водах и растениях.

Вторая зона - ГПЛ на месте и в сфере непосредственного влияния горно-промышленных комбинатов и обогатительных фабрик, претерпевшие полную или значительную перестройку первоначальной структуры за счет отчуждения площадей под предприятия и загрязнения токсичными выбросами, отходами и стоками. При обогащении и (или) плавлении руд расширяется ассоциация и увеличиваются концентрации многих элементов-загрязнителей. Содержание пыли и тяжелых металлов в воздухе этих экологически опасных зон в радиусе до 2 — 3 км превышает их ПДК на 1 — 2 порядка и более. Контрастность аномалий металлов убывает в ряду выбросы — атмосферные выпадения (снег) — почвы [ Пер.]. Площадь и конфигурация аномалий зависят от характера и способа поступления поллютантов в атмосферу (мощность взрывов в карьерах, высота фабричных труб), метеорологической ситуации (направление и скорость ветра, частота инверсий и др.), геоморфологических условий (равнины, горы). В общем случае содержание загрязняющих веществ уменьшается от "точечных" отдельно стоящих источников, какими в основном являются горнопромышленные предприятия, по экспоненте, т.е. когда интенсивность загрязнения воздуха обратно пропорциональна квадрату расстояния от техногенного источника. Загрязнение почв и растений подчиняется обычно той же зависимости, но местами имеет и более сложный характер.

Третья зона достаточно сильного загрязнения воздуха, почв, снега и растений в равнинных районах захватывает расположенные вблизи месторождений и комбинатов селитебные и пригородные ландшафты в радиусе 3—5 км. Ассоциация загрязнителей сокращается, их концентрации, как правило, на порядок меньше, чем в первых двух зонах. В горных ландшафтах зоны загрязнения интерферируют поперек долины и не выходят на водоразделы. Велико значение экспозиции склонов. В продольном профиле долин загрязнение прослеживается вниз по течению в водах (взвесь) и донных отложениях на расстоянии 10 — 15 км.

Четвертая зона умеренного площадного загрязнения имеет нестабильные очертания и располагается в радиусе от 3 — 5 до 10 — 20 км. Фоновые ландшафты обычно расположены не ближе 15 — 20 км от источников рудных выбросов и стоков.

Сведения о формах нахождения тяжелых металлов в ГПЛ противоречивы. Хотя основная часть металлов поступает в составе малорастворимых соединений (оксиды, сульфиды, металлические частицы), во многих случаях отмечается увеличение доли подвижных форм металлов по сравнению с фоновыми ландшафтами. Это способствует более интенсивному загрязнению растений, в том числе и продуктов питания и создает угрозу здоровью населения.


Целью эколого-геохимической оценки воздействия горного предприятия на окружающую среду является определение уровня геохимического загрязнения объектов окружающей среды на территории, попадающей в зону воздействия предприятия.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: