Выбор изоляторов воздушных ЛЭП и РУ

Механизм перекрытия изолятора при загрязненной поверхности и под дождем.

Наличие загрязнения в сухом состоянии не оказывает заметноговлияния на разрядное напряжение, так как слой сухого загрязнения имеет высокое сопротивление. При увлажнении в слое образуется электролит, что уменьшает сопротивление слоя загрязнения и приводит к изменению распределения напряжения по поверхности изолятора, в результате чего разрядное напряжение снижается.

Перекрытие изолятора под дождем связано с образованием на его поверхности проводящей пленки воды толщиной в десятые доли мм и подсушиванием отдельных участков поверхности токами утечки,

что приводит к возникновению частичных дуг и их удлинению

Под действием приложенного к изолятору напряжения по увлажненному слою загрязнения проходит ток утечки, нагревающий его (рис. 3.4). Так как загрязнение распределено по поверхности изолятора неравномерно, плотность тока утечки неодинакова на отдельных участках изолятора из-за сложной конфигурации его поверхности, то нагревание слоя загрязнения происходит также неравномерно.


D

D

I

Рис. 3. 4. Ток утечки по поверхности изолятора

На тех участках изолятора, где плотность тока наибольшая, а загрязняющий слой тоньше, происходит интенсивное испарение воды, и образуются подсушенные участки с повышенным сопротивлением. Подсушенные участки расширяются в первую очередь по окружности изолятора и в меньшей степени по высоте. Как только подсушенный участок образуется по всей окружности изолятора, почти все напряжение, воздействующее на изоляцию, оказывается приложенным к этому участку. В результате этого подсушенный участок перекрывается искровыми каналами, называемыми частичными дугами.

Сопротивление искрового канала меньше сопротивления подсушенного участка поверхности изолятора, поэтому ток утечки возрастает. Возрастание тока утечки приводит к дальнейшему подсушиванию слоя загрязнения и его ширины, следовательно, и к увеличению его сопротивления.

Процессы подсушки поверхности происходят медленно. При импульсном воздействии напряжения они могут не успеть развиться. Дождь и загрязнение практически не влияют на его разрядное напряжение при грозовых импульсах.

Поверхности изоляторов загрязняются и увлажняются неравномерно. При сложной форме изолятора разряд на отдельных участках может отрываться от поверхности и развиваться по наикратчайшему пути в воздухе. Эффективно используется не вся геометрическая длина пути утечки, а только ее часть. Поэтому напряжение перекрытия изоляторов, загрязненных в реальных условиях эксплуатации пропорционально не геометрической, а эффективной длине пути утечки = /k, где k 1 - коэффициент формы (или использования поверхности) изолятора.

Для гирлянд и колонок, состоящих из изоляторов

(3.4)

коэффициент k для тарельчатых изоляторов рассчитывается по формуле

(3.5)

Для конкретной местности с определенными метеорологическими условиями, свойствами и интенсивностью загрязнения атмосферы вероятность перекрытия изолятора зависит от величины удельной длины пути утечки [см/кВ]

(3.6)

Поскольку для различных районов нормируется, должно соблюдаться условие Тогда число изоляторов в гирлянде должно определяться по формуле

(3.7)

Проверка выбранного количества изоляторов производится по условиям работы гирлянд под дождем при воздействии внутренних перенапряжений по формуле

(3.8)

где - расчетная кратность внутренних перенапряжений;

- расчетная мокроразрядная напряженность (кВ/см);

Н - строительная высота изолятора (мм).

Вопросы для самоконтроля:

1. Каким образом внесение твердого диэлектрика в однородный разрядный промежуток снижает его электрическую прочность?

2. Для каких изоляционных конструкций тангенциальная составляющая напряженности электрического поля больше, чем нормальная составляющая >?

3. В каком случае каналы стримеров, развивающихся вдоль поверхности диэлектрика, имеют значительно большую емкость по отношению к внутреннему электроду?

4. Как образуется скользящий разряд?

5. Как влияет на разрядное напряжение наличие загрязнения в сухом состоянии на поверхности изоляторов?

6. Каков механизм развития разряда вдоль поверхности увлажненного изолятора?

7. По какой формуле определяется число изоляторов в гирлянде ЛЭП и ОРУ?

8. Как производится проверка выбранного количества изоляторов по условиям работы гирлянд под дождем?


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: