Нано-фотогальванические элементы

Современные здания – конечные потребители, получающие энергию от электростанций. Необходимо в корне пересмотреть эту ситуацию и понять могут ли здания сами стать электростанциями? Идеальным решением для 2050 г. стал бы город, самостоятельно снабжающий себя энергией, город без электростанций, без потребности в ископаемом топливе, без выброса углекислого газа, без глобального потепления. Научная фантастика или реалистичный взгляд? Ответом может стать освоение самого мощного источника энергии нашей Вселенной – Солнца.

Одна из самых серьёзных проблем настоящего времени – необходимость уменьшить нашу зависимость от ископаемых видов топлива. Существует большое количество возобновляемых источников энергии, но Солнце стоит особняком – за один час Земля получает от Солнца достаточно энергии, чтобы обеспечить нашу планету на целый год. Технология освоения солнечной энергии не нова – несколько поколений боролись за возможность её эффективного использования.

Город Фрайбург (Германия) стал центром развития гелиотехнологий, в особенности фотогальванических элементов, а Фрайбургский Институт солнечной энергии – один из ведущих в этом направлении. Солнечные панели установлены повсюду: от футбольного стадиона до целого квартала домов (Quartier Vauban), функционирующих как мини-электростанции. Все 58 домов этого района и граничащее с ним офисное здание построены в рамках новой концепции «активного дома», то есть они производят больше энергии, чем потребляют. Еженедельник Wirtschaftswoche назвал его «самым энергетически современным поселком Европы» (рис. 4.49.).

Рисунок 4.49. «Солнечный город» Фрайбург

Главной экологической новинкой стал «вращающийся зелёный дом» «Гелиотроп», признанный специалистами одним из самых экологичных домов в мире (рис. 4.50.). Мало того, что дом этот стоит всего лишь на одной «ножке», он ещё и медленно поворачивается вслед за солнцем. Таким образом, огромные солнечные батареи на крыше дома воспринимают максимум энергии.

Рисунок 4.50. «Вращающийся зелёный дом» «Гелиотроп»

Фрейбург – невероятно успешный экологический эксперимент, доказывающий, что использование солнечной энергии возможно, однако непомерно высокая цена сдерживает повсеместное внедрение гелиотехнологий.

Большинство фотогальванических элементов состоит из двух слоев силикона, проложенных между металлическими полосками. Ультрачистый промышленный силикон – дорогостоящий материал, стоимостью до 450 $ за кг. Высокая первоначальная стоимость установки силиконовых солнечных батарей мешает распространению этой технологии.

Современные нанотехнологии позволяют использовать абсолютно иные материалы (гораздо более дешевые, чем силикон) для производства солнечных элементов. Один из самых изобилующих и дешёвых материалов во вселенной – углерод. Для производства фотогальванических элементов используется особый тип углерода под названием фуллерен – вещество, находящееся на передовой новой науки «нанотехнологии» – науки всего маленького.

Термином «фуллерены» называют замкнутые молекулы углерода типа С60, С70, С76, С84, в которых все атомы находятся на сферической или сфероидальной поверхности. В этих молекулах атомы углерода расположены в вершинах правильных шестиугольников или пятиугольников, которые покрывают поверхность сферы или сфероида. Центральное место среди фуллеренов занимает молекула С60, которая характеризуется наибольшей симметрией и как следствие наибольшей стабильностью. Любопытно, что по своей форме молекула С60 напоминает футбольный мяч, который также имеет форму Архимедового усеченного икосаэдра (рис. 4.51.). [26].

Рисунок 4.51. Фуллерен

Наномасштаб очень специфичен для материалов, поэтому, когда добираешься до такого крошеного размера, свойства материалов изменяются. Толщина человеческого волоса 10000 нанометров, толщина ДНК всего 2 нанометра. Работа с такими масштабами вызывает серьёзные осложнения.

Эффективность традиционных силиконовых батарей около 15 %, а нано-фотогальванические элементы улавливают только 6 % попадающей на них энергии. Для повышения эффективности планируется использовать одно из уникальных свойств фуллирена – изменение размера его частиц вызывает изменение цвета. Цвет материала указывает, насколько хорошо он поглощает свет, который в фотогальваническом элементе преобразуется в электричество. Солнечные батареи на основе наноматериалов могут питать определённые устройства, например, часы или калькуляторы, или даже мобильные телефоны, потому что уже обладают 5–6 % эффективностью. Но чтобы добиться достаточной эффективности для питания целого здания, необходимо улучшить этот показатель в 2–3 раза. К 2050 г. учёные планируют повысить КПД нано-фотогальванических элементов до 20 %.

Поистине революционная технология. В отличие от своих силиконовых предшественников нано-фотогальванические элементы более легкие и более гибкие. Благодаря тому, что новое поколение солнечных батарей гораздо меньше по размеру, возможности их применения буквально безграничны. Их можно будет применять в автомобилях, одежде и даже красках. Строения будущего, покрытые нано-фотогальваническими красками любого цвета (по нашему выбору) смогут поставлять энергию в наши дома.

Снижения выбросов углекислого газа в результате внедрения нано-фотогальванических элементов оценивается в 51 %, что делает эту идею весьма перспективным направлением в решении проблемы энергосбережения в будущем.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: