Механические характеристики исполнительных механизмов

АД

ДПТ СВ

ДПТ Пос.В

3.Естественная механическая характеристика двигателя постоянного тока последова-тельного возбуждения (рис. 8.6) – мягкая, потому что ее жесткость

β = ΔМ / Δω > 10%.

Это означает, что при изменении электромагнитного момента двигателя даже в не-больших пределах его скорость изменяется значительно.

Рис. 8.6. Естественная механическая характеристика двигателя постоянного тока последовательного возбуждения

Напомним две характерные особенности этого двигателя:

1. при уменьшении механической нагрузки на валу или ее отсутствии (М = М)

скорость двигателя резко увеличивается, двигатель «идет вразнос». Поэтому этот двига-тель нельзя оставлять без нагрузки на валу;

2. При пуске двигатель развивает пусковые моменты М гораздо большие, чем у дви-гателей других типов.

Эти двигатели не применяются на судах, но применяются на берегу, например, в электротранспорте, в частности, в троллейбусах, где они не остаются без нагрузки на валу и где нужны большие пусковые моменты (при трогании троллейбуса с места).

Рис. 8.7. Естественные механическиея характеристики двигателей постоянного тока смешанного возбуждения: 1- с параллельно-последовательным возбуждением; 2 - с последовательно- параллельным возбуждением

4.Естественная механическая характеристика двигателя постоянного тока смешанно-го возбуждения является промежуточной между характеристиками двигателей паралель-ного и последовательного возбуждения, т.к. магнитный поток возбуждения создается сов-местным действием обеих обмоток – параллельной и последовательной.

Обе механические характеристики – мягкие, потому что их жесткость

β = ΔМ / Δω = ΔМ / 0 > 10%.

На судах двигатели смешанного возбуждения применяются в регулируемых элект-роприводах – лебедках, кранах, брашпилях и шпилях.

Естественная механическая характеристика асинхронного двигателя имеет два участка – нерабочий (разгонный) АВ и рабочий ВСD (рис. 8.8).

Рис. 8.8. Естественная механическая характеристика асинхронного двигателя

При пуске двигатель развивает пусковой момент М (отрезок ОА), после чего разгоняется по траектории АВС до точки С. При этом на участке АВ одновременно увеличи-ваются как скорость, так и момент, в точке В двигатель развивает максимальный момент М. На участке ВС скорость продолжает увеличиваться, а момент уменьшается, вплоть до номинального (точка С). На участке BC двигатель перегружен, т.к. в любой точке этого участка электромагнитный момент двигателя больше номинального (М >

> М).

В нормальних условиях двигатель работает на участке СD, жесткость которого

β = ΔМ / Δω < 10%.

Это означает, что при изменении момента в широких пределах скорость двигателя изменяется незначительно.

Асинхронные двигатели нашли самое широкое применение на судах с электростан-цией на переменном токе.

Промышленность выпускает специально для судов асинхронные двигатели разныхсерий, например, 4А…ОМ2 (четвертая серия асинхронных двигателей), МАП (морской асинхронный полюсопереключаемый), МТF (c фазным ротором) и др.

При этом двигатели серии 4А – односкоростные, серии МАП – двух- и трехскоростные, серии МТF – число скоростей определяется схемой управления (до 5 скоростей).

Если для любого электродвигателя входной величиной является статический мо-мент механизма, а выходной – его скорость, то для механизмов, наоборот, входной величиной является скорость ω (от двигателя), а выходной – статический момент механизма М.

Это означает, что при любом изменении скорости механизма (двигателя) будет изменяться его статический момент М.

Зависимость статического момента механизма М от его угловой скорости ω называется механической характеристикой механизма - М (ω).

Таким образом, система координат для изображения механических характеристик

механизмов – это М (ω).

. Различают два вида механических характеристик:

1. крановые, когда при изменении скорости в широких пределах статический момент не изменяется (рис. 8.9, характеристика 1).

2. вентиляторные, у которых статический момент пропорционален квадрату скорости (рис. 8.9, характеристика 2).

Рис. 8.9. Механические характеристики механизмов: а – в системе координат М (ω); б - в системе координат ω (М)

Крановые характеристики имеют механизмы грузовых кранов, лебедок, брашпи-лей, т.е. механизмов, работа которых связана с преодолением действия силы тяжести.

Вентиляторные характеристики имеют центробежные вентиляторы, насосы и др.

У таких механизмов условия пуска – легкие, т.к. при пуске на валу механизма есть небольшой момент холостого хода М, создаваемый силами трения в элементах привода.

Для изображения механических характеристик двигателей применяют систему координат ω (М), механических характеристик механизмов – «перевернутую» систему М (ω).

Применение разных систем координат для двигателей и механизмов создает трудности при рассмотрении электромеханических свойств электропривода в целом, состоящего из электродвигателя и механизма.

Поэтому на практике для изображения механических характеристик двигателей и механизмов принята единая система координат ω (М), т.е система, принятая для механи-ческих характеристик электродвигателей.

В этой системе координат механические характеристики механизмов показаны на рис 8.9, б.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: