Типы силовых электронных устройств

1) усилители мощности, в которых ток или напряжение управляющего воздействия сохраняют вид входного сигнала;

2) регуляторы мощности, в которых обеспечивается соответствие среднего значения мощности формируемого управляющего воздействия значению входного сигнала.

Управляющая схема усилителя мощности может быть реализована на операционном усилителе DA1 (рис. 1.8), на транзисторах VT1, VT2 реализован выходной каскад.

Рисунок 1.8 — Электрическая схема усилителя мощности

Между управляющей схемой и выходными каскадами усилителей мощности часто требуется необходимость гальванической развязки. Гальваническая развязка практически полностью исключает влияние выходных каскадов на формирование управляющего воздействия (переходные процессы, возникающие при коммутации мощных нагрузок, приводят к появлению бросков тока и напряжения, которые могут изменять закон формирования управляющего сигнала, либо вызывать ложные срабатывания).

С целью разделения входных и выходных цепей используют оптроны — полупроводни­ковые приборы, в которых находятся излучатель света, управляемый входным током, и фотоприемник, расположенные в общем корпусе. Через оптрон возможна только прямая передачи сиг­нала, поскольку его входная и выходная цепи полностью изолированы.

В отличие от разделительного конденсатора оптрон в качестве элемента связи обеспечивает передачу сигнала вплоть до нулевой частоты, т. е. постоянного (условно) напряжения. Изолирующая способность оптрона очень велика, поскольку его работоспособность сохраняется при высоком напряжении между входом и выходом (порядка десятков киловольт) в диапазоне частот от 0 до 10... 100 МГц и выше.

Регуляторы осуществляют преобразования входных сигналов. Под влиянием входных сигналов (управления или возмущения) изменяются регулируемые переменные. Цель регулирования заключается в формировании таких законов, при которых выходные регулируемые переменные мало отличались бы от требуемых значений.

Регуляторы делятся по закону регулирования, наиболее часто применяется двухпозиционное регулирование и ПИД-регулирование (пропорционально-интегрально-дифференциальное).

Двухпозиционные регуляторы нашли широкое распространение, благодаря своей простоте и малой стоимости. Двухпозиционное регулирование обеспечивает включение или отключение исполнительного устройства (например, нагревателя) в зависимости от того, ниже или выше измеренный параметр относительно заданного уровня. При двухпозиционном регулировании в системе всегда присутствуют колебания технологического параметра, причем размах этих колебаний определяется только параметрами системы (инерционностью датчиков, исполнительного устройства и самой системы) и практически не зависит от регулятора.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: